QSAR TOOLBOX

The OECD QSAR Toolbox for Grouping Chemicals into Categories

OECD QSAR Toolbox v.4.4.1

Step-by-step example for building QSAR model

- Background
- Keywords
- Objectives
- The exercise
- Workflow of the exercise

Background

- This is a step-by-step presentation designed to take you through the workflow of the Toolbox for building a QSAR model for predicting aquatic toxicity.
- By now you have some experience in using the Toolbox so there will be multiple key strokes between screen shots.

Note: Please note that building of custom items (such as profilers, (Q)SAR models as well as importing of custom databases) is only enabled in single user mode. So, if your Toolbox is installed in multiuser mode, you will be not able to follow this tutorial.

- Background
- Keywords
- Objectives
- The exercise
- Workflow of the exercise

Keywords

TARGET CHEMICAL - chemical of interest

MODULE – a Toolbox module is a section dedicated to specific actions and options (e.g. Profiling)

WORKFLOW – the use, in combination, of the different modules (e.g. prediction workflow: from input to report)

PROFILER - algorithm (rule set) for the identification of specific features of the chemicals. Several types of profilers are available, such as structural (e.g. Organic functional groups), mechanistic (e.g. Protein binding by OECD) and endpoint-specific (e.g. in vitro in vitro mutagenicity (Ames test) alerts by ISS) profilers.

ALERT - the profilers consist of sets of rules or alerts. Each of the rules consists of a set of queries. The queries could be related to the chemical structure, physicochemical properties, experimental data, comparison with the target or list with substances and external queries from other predefined profilers (reference queries).

CATEGORY – "group" of substances sharing same characteristics (e.g. the same functional groups or mode of action). In a typical Toolbox workflow, it consists of the target chemical and its analogues gathered according to the selected profilers

ENDPOINT TREE – Endpoints are structured in a branched scheme, from a broader level (Phys-Chem properties, Environmental Fate and transport, Ecotoxicology, Human health hazard) to a more detailed one (e.g. EC3 in LLNA test under Human health hazard-Skin sensitization)

DATA MATRIX – Table reporting the chemical(s) and data (experimental results, profilers outcomes, predictions). Each chemical is in a different column and each data in a different row

(Q)SAR - (Q)SAR models can be used to fill a data gap if no adequate analogues are found for a target chemical

- Background
- Keywords
- Objectives
- The exercise
- Workflow of the exercise

Objectives

- This presentation demonstrates building a QSAR model for predicting acute toxicity of aldehydes to *Tetrahymena pyriformis*. The presentation addresses specifically:
 - predicting acute toxicity for a target chemical;
 - building a QSAR model based on the prediction;
 - applying the model to other aldehydes;
 - exporting the predictions to a file.

- Background
- Keywords
- Objectives
- The exercise
- Workflow of the exercise

The Exercise

- This exercise includes the following steps:
 - select a target chemical Furfural, CAS 98-01-1;
 - extract available experimental results;
 - search for analogues;
 - estimate the target endpoint: 48h-IGC50 for *Tetrahymena* pyriformis by using trend analysis;
 - improve the data set by either:
 - subcategorizing by "Protein binding" mechanisms, or
 - assessing the difference between outliers and the target chemical
 - evaluate and save the model;
 - use the model to display its training set, visualize its applicability domain and perform predictions.

- Background
- Keywords
- Objectives
- The exercise
- Workflow of the exercise

Workflow of the exercise

- Remember the Toolbox has 6 modules which are used in a sequential workflow:
 - Input
 - Profiling
 - Data
 - Category Definition
 - Data Gap Filling
 - Report

- Background
- Keywords
- Objectives
- The exercise
- Workflow of the exercise
 - Input

Input

1. Click on CAS# 2. Enter CAS# 98-01-1; 3. Click Search;

Input Target chemical identity

The Toolbox now searches the Toolbox databases and inventories for the presence of the chemical with structure related to the current CAS number. It is displayed as a 2D image. Note it is unselected by default.

1. Mark desired chemical (in case there is only one chemical it is marked by default); 2. Click **OK** to add chemical in data matrix;

Input Target chemical identity

- Target chemical is displayed on the data matrix.
- To see chemical identification click on the box next to "Structure info" (see next screen shot).

Chemical Input Target chemical identity

- Background
- Keywords
- Objectives
- The exercise
- Workflow of the exercise
 - Input
 - Define Target Endpoint

Input Define Target Endpoint

• In this exercise we will build a QSAR model to estimate the following endpoint:

Ecotoxicological Information#Aquatic Toxicity#Growth#IGC50#48h#Protozoa#Ciliophora#Ciliatea #Tetrahymena pyriformis

 For defining the target endpoint the "Define target endpoint" functionality is used (see next few slides)

Input Define target endpoint

- Defining of the endpoint allows entering the endpoint of interest e.g. EC3, LC50, gene mutation etc., along with specific metadata information. Based on the metadata, relevancy of the profiles and databases is provided expressed in different highlighting:
 - In green are highlighted the most suitable profilers related to the endpoint and databases including data for the defined target endpoint, while
 - in the orange are colored profilers which are plausible with respect to the defined target endpoint.

Input Define target endpoint

	Data Category definition Data	Report	X * * * * * 安告 安臣
Document Single Chemica Document Single Chemica December 2015 Save CAS# Name Structure Compositi	al Chemical List	Search Target Endpoint	The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC, Bulgaria
Documents Filter endpoint tree Document 1 # [G : 1;Md: 0;P: 0] CAS: 98011 Structure Structure	X Close	Select endpoint Ecotoxicological Information Aquatic Toxicity	×
Equipmental Esta and Facesore Equipmental Esta and Facesore Argustic Concisy Seament Lookidy Terrestrial Toxicity P Human Health Hazards		Effect Growth	
		Duration ++ 48 h Test organisms (species) Tetrahymena pyrifor × Endpoint IGC50 × Selection metadat	ı of additional a fields:
Undefine	3		Add Down
		Clear	Remove 5
		Back	Finish /

1. Click **Define**; 2. Select **Aquatic Toxicity**; 3. Click **Next** and consecutively add the following endpoint and metadata (4): **Endpoint** – IGC50; Effect – **Growth**; Duration – **48h**; Test organism (species): *Tetrahymena pyriformis*; 5. Click **Finish**

Input Define target endpoint

- Background
- Keywords
- Objectives
- The exercise

Workflow of the exercise

- Input
- Profiling

Profiling Overview

- "*Profiling"* module refers to the electronic process of retrieving relevant information on the target compound, other than environmental fate, ecotoxicity and toxicity data, which are stored in the Toolbox database.
- Available "profilers" includes likely mechanism(s) of action, wich could be useful in forming categories that include the target chemical.
- "Profilers" are a collection of empirical and mechanism knowledge which could be used to analyse the structural properties of chemicals.
- The "profilers" identify the affiliation of the target chemical(s) to preliminary defined categories (functional groups/alerts).
- The "Profiling" module contains also observed and simulated metabolisms/transformations, which could be used in combination with the profilers
- The outcome of the profiling determines the most appropriate way to search for analogues, but they are also useful for preliminary screening or prioritization of substances.
- The "profilers" are not (Q)SARs, i.e. they are not prediction models themselves;
- Based on the "profilers' relevancy" (determined by the defined target endpoint), the most suitable and plausible once are getting colour highlighted.

Profiling Profiling the target chemical

- Select the "Profiling methods" related to the target endpoint
- This selects (a green check mark appears) or deselects (green check disappears) profilers.
- In this case select all green (the most suitable to the target endpoint) profilers – see next slide

Profiling Profiling the target chemical

Profiling Profiling the target chemical

- The actual profiling will take several seconds depending on the number and type of selected profilers.
- The results of profiling automatically appeared as a dropdown box under the target chemical (see next screen shot).
- Green rectangles in some result boxes indicate there is more than one profiling result and the field needs to be expanded.

Profiling

Profiling the target chemical – profiling results

1. Double click on the cell with "Aldehydes (Acute toxicity)" results based on US-EPA Chemical New Chemical Categories to see why the chemical is categorized as aldehyde

2. Literature information is displayed. The knowledge explained here is used for coding the structural boundaries of the category

Profiling Profiling the target chemical – Boundaries of the profilers

Explanation for: US-EPA New Chemical Categories -> Aldehydes (Acute toxicity)		
Categories	Definition I roperties Training Set Literature MetaInfo Table Custom Captions Scheme	
Filter:	Category tree	
 US-EPA New Chemical Categories Acid Chlorides Acrylates/Methacrylates (Acute toxicity) Acrylates/Methacrylates (Chronic toxicity) Aldehydes (Chronic toxicity) Aniones (Acute toxicity) Aniines (Acute toxicity) Anionic Surfactants Azides (Acute toxicity) 	[4] Aldehydes (Acute toxicity)	ADD DEL AND OR NOT Copy
Azidas (Chronic tovisith)	Query details	
Explanation	[0] Structure Query Metabolism Contents SMARTS Queries [#6h](=[#8])[#6,#1] Search 1: SMARTS [#6h](=[#8])[#6,#1] Masks View mode:	it
Map 1 3	Complex search options ✓ Exact connectivity Ignore stereo information Exact match Queries execution mode All ✓ Mapping ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	

- 1. Structural boundaries of the category- Aldehydes (Acute toxicity); The boundaries which are met are ticked with green 💬
- 2. Definition of the SMARTS used for coding the knowledge; Visualization of the common fragment used for coding the knowledge;
- 3. The target molecule and highlighted (red) part of the molecule meeting the structure boundary.

Profiling Profiling results

- 1) In module *Profile*, you have profiled the target chemical according to the suitable profilers (green) related to the target endpoint.
- 2) The target chemical is categorized as "aldehyde" based on predefined Acute aquatic toxicity US-EPA profiler (hereafter called US-EPA) and the two endpointspecific profilers (Acute aquatic toxicity classification by ECOSAR (hereafter called ECOSAR) and Acute aquatic toxicity MOA by OASIS (hereafter called MOA))
- 3) By the endpoint-specific "Acute aquatic toxicity classification by Verhaar" the target is categorized as "Class 3 (unspecific reactivity)"
- 4) Moreover the target is categorized as "aldehyde" based on Protein binding by OASIS reactiving by Schiff-base formation mechanism
- 5) In general the target is classified as "aldehyde"
- 6) All of the above mentioned profilers could be used for categorization purposes (collecting analogues)
- 7) In this case US-EPA profiler will be used for categorization purpose (primary grouping).

- Background
- Keywords
- Objectives
- The exercise
- Workflow of the exercise
 - Input
 - Profiling
 - Data

Data

- *Data* module refers to the electronic process of retrieving the environmental fate, ecotoxicity and toxicity data that are stored in the Toolbox databases.
- Data gathering can be executed in a global fashion (i.e. collecting all data of all endpoints) or on a more narrowly defined basis (i.e. collecting data for a single or limited number of endpoints).
- Once the endpoint is selected, the relevant databases are highlighted. Meaning of the colors could be seen within the **Options** (1) by click **Legend** (2).

• In this example, we limit our data gathering to the databases containing aquatic toxicity data for the defined target endpoint (Aquatic OASIS).

Data Extracting endpoint values

- Background
- Keywords
- Objectives
- The exercise
- Workflow of the exercise
 - Chemical Input
 - Profiling
 - Data
 - Category definition

Category definition Defining US-EPA category

- As mentioned before, the initial search for analogues is based on structural similarity, of US EPA categorization
- Select US-EPA New Chemical Category
- Click Define (see next screen shot)

Category definition Defining US-EPA category

QSAR TOOLBOX	Profiling > Data Category definition > Report	ו•••			
Categorize	Category consistency 1 Category elements	The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC. Bulnaria			
Image: Source Constant US-EPA New Chemical Categories Image: Source Constant Image: Source Constant Image: Source Consta	Control Interesting Fibre response Interesting Structure info Interesting	Developed by LMC, Bulgaria			
Hydrolyss half-Re (pH 6.5-7.4) Ioncation at pH = 1 Ioncation at pH = 4 Ioncation at pH = 7.4 Ioncation at pH = 9 Lonski Rule Cass OECD HPV Chemical Categories		×			
1. Go to <u>Category definition</u> module; 2. Highlight "US-EPA New Chemical Categories" ; 3. Click Define ; 4. Put a tick in the Strict box (see next screen shot): 5. Click OK to confirm the category Aldebydes (Acute toxicity) :					

Category definition Defining US-EPA category strict functionality

- The Strict functionality means that the software will group analogues having ONLY the categories of the target and will exclude the analogues having any other categories according to the profiler used in the grouping method.
- For example, if the profiling for the target results in Aldehydes (Acute toxicity) ONLY according to US-EPA category, the group of analogues will include Aldehydes (Acute toxicity) ONLY. (See next screen shot)
Category definition Defining US-EPA category strict functionality

Input

Category definition Analogues

- The Toolbox now identifies all chemicals corresponding to Aldehydes (Acute toxicity) by US-EPA listed in the databases selected under "Data".
- 101 analogues including the target chemical are identified; they form a mechanistic category "Aldehydes (Acute toxicity)", which will be used for gap filling.

Category definition Reading data for Analogues

- The Toolbox automatically request the user to select the endpoint that should be retrieved
- The user can either select the specific endpoint or by default choose to retrieve data on all endpoints (see below). Click OK to read all available data. 175 data points are collected for the list of 101 analogues

💽 Read data?	×	💽 Gather data	_		×
All endpoints Choose		175 points add	ed across 101 chemicals.		
	OK Cancel			O	к

Category definition Summary information for Analogues

After a message for number of data collected, the experimental results for the target and analogues are inserted into the matrix.

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Outlook

- Background
- Keywords
- Objectives
- The exercise
- Workflow of the exercise
 - Chemical Input
 - Profiling
 - Data
 - Category definition
 - Data gap filling

Overview

- *Data Gap Filling* module gives access to five different data gap filling tools:
 - Read-across
 - Trend analysis
 - (Q)SAR models
 - Standardized workflow (SW)
 - Automated workflow (AW)
- The most relevant data gap mechanism is used , taking into account the following considerations:
 - *Read-across* is the appropriate data-gap filling method for "qualitative" endpoints like skin sensitisation or mutagenicity for which a limited number of results are possible (e.g. positive, negative, equivocal). Furthermore read-across is recommended for "quantitative endpoints" (e.g., 96h-LC50 for fish) if only a low number of analogues with experimental results are identified.
 - *Trend analysis* is the appropriate data-gap filling method for "quantitative endpoints" (e.g., 96h-LC50 for fish) if a high number of analogues with experimental results are identified.
 - (Q)SAR models can be used to fill a data gap if no adequate analogues are found for a target chemical.
 - Automated and standardized workflows follow preliminary implemented logic. The AW is not affected by the user activities (proceeding or subsequent), while the SW stops at the each step of the workflows allowing the user to make different selection.
- In this example we will use trend analysis.

The OECD QSAR Toolbox for Grouping Chemicals into Categories

QSAR TOOLEOX

Data Gap Filling (IGC 50 48h of *T. pyriformis*) Apply Trend analysis

QSAR TOOLBOX	Input Profiling	► Data ► Ca	tegory definition	ap Filling									× 0	
rend analysis Rer Jacros	dized Automated				1	J							for Grinto C	ouping Chemicals ategories
Document CAS: 99011 Aldehydes (Acute toxicity) Strict (Filter endpoint tree Structure	▼ 1 [target]	2	3 • • • • • • • • • • • • • • • • • • •	4	5 HgC0	6	7	8	9 ~~~O_b	10	11 	12	13 ^
	Structure info Parameters Physical Chemical Properties Environmental Fate and Transport Cotoxicological Information Aquatic Toxicity Aquatic Toxicity Growth H 48 h Protozoa Ciliptera	AW SW .	2											
Data Gap Filing Settings Data Gap Filing Settings Only endpoint relevant At this position: Setect a cell with a rigid (bold) path Automated workflows Standardized workflows	GC50 GC50	722 0 Mt 145 m 171 60/80 Mt 105 n 19/22	ng/L	M: 112 mg/L	M: 3.9 mg/L M: 1.66 mg/L	M: 14 mg/L M: 14.6 mg/L	M: 7.96 mg/L M: 5.64 mg/L	M: 8.2 mg/L M: 3.19 mg/L	M: 937 mg/L	M: 191 mg/L M: 20 mg/L	M: 5.01 mg/L	M: 167 mg/L	M: 6.32 mg/L	M: 103 mg/L
1. Go to Dat <i>Tetrahymena</i>	a Gap Fillin pyriformis ut	g; 2. nder th	Highligh e target	it the	data nical:	gap 3. Se	corr	espon Trend	ding ana l	to ta	rget (endpo	oint:]	(GC50

Data Gap Filling (IGC 50 48h of *T. pyriformis*) Apply Trend analysis

- A message for possible data inconsistency appears
- It is recommended the log(1/mol/L) scale to be chosen

Possible data inconsistency	_		\times
Metadata ▷ Class ▷ Duration ▷ Effect ▷ Endpoint ▷ Kingdom ▲ Native scale/unit w mol/L (72 chemicals; 72 data) ▲ Phylum			
 Ciliophora (72 chemicals; 72 data) Test organisms (species) Tetrahymena pyriformis (72 chemicals; 72 data) 			
Select scale/unit to use g/m [0 native data and 72 converted] () log(1/mol/L) [0 native data and 72 converted] mol/4 [72 native data and 0 converted]			
Converted data 72 from scale/unit mol/L			
Chemicals 72/72; Data 72/72	ОК	Car	ncel

• The resulting plot can be seen on next screen shot

Data Gap Filling (IGC 50 48h of *T. pyriformis*)

Data Gap Filling (IGC 50 48h of *T. pyriformis*) Interpreting dots on the graph

- The resulting plot outlines the experimental results of all analogues (Y axis) according to a descriptor (X axis) with LogKow being the default descriptor (see previous screen shot).
- The **RED** dot represents the predicted value for target chemical.
- The **ORANGE** dot represents the observed data value for the target chemical.
- The **BLUE** dots represent the experimental results available for the analogues.
- The **LIGHT BLUE** dots (see the following screen shots) represent analogues belonging to different subcategories.

Data Gap Filling (IGC 50 48h of *T. pyriformis*) An accurate analysis of data set

- In this example, the mechanistic properties of the analogues are consistent.
- Subcategorization can be performed based on protein binding mechanisms. This is the second stage of analogue search - requiring the same interaction mechanism.
- Acute effects are associated with covalent interaction of chemicals within cell proteins, i.e. with protein binding.
- Chemicals with a different protein binding mechanism / reactions compared to the target chemical will be removed.

Data Gap Filling (IGC 50 48h of *T. pyriformis*) Subcategorization

- After the available data has been retrieved, the user can then further subcategorize the results according to the following endpoint-specific subcategorizations:
 - Acute aquatic toxicity MOA by OASIS
 - Protein binding by OASIS
 - Aquatic toxicity classification by ECOSAR
- These steps are summarized in the next screen shots.

QSAR TOOLEOX

Data Gap Filling (IGC 50 48h of *T. pyriformis*)

Subcategorization 1: Acute aquatic toxicity MOA by OASIS

Subcategorization	- 🗆 X		01010										X 6 4	A 6
Options Profilers 1 Select f Select All Unselect All Invert About Options Protein binding potency GSH Invert About Options Invert About Options	Adjust options Adjust options Target	ategory definition	01 0 10100 Data Gap Fillin	g F Repo	rt									
Protein binding potency Lys (DPRA 13%) Toxic hazard classification by Cramer Toxic hazard classification by Cramer (extended) Ultimate biodeg	Aldehydes												The OECD for Group into Cate <u>c</u>	QSAR Toolbox ing Chemicals jories
Uncouplers (MITOTOX)													Developed	d by LMC, Bulgaria
Endpoint Specific Asute acuptic toxicity checification by Ver			1 [target]	2	3	4	5	6	7	8	9	11	12	13 ^
Acute qualit toxicity laskination by 2000 Acute oral Toxicity Acute toxicity daskination by ECOSAR Bioaccumulation - metabolism alerts Researcumulation - metabolism alerts				Hg4	HgC0	16	HyC	HyC~~~~d~~d90	750000000	rsc J	nuc O og	_0^	H5~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Hyc
Biodegradation fragments (BioWIN MITI)														
Carcinogenicity (genotox and nongenotox) alerts by ISS	×	50 72/7	2 M: 145 mg/L	M: 31.7 mg/L	M: 112 mg/L	M: 3.9 mg/L	M: 14 mg/L	M: 7.96 mg/L	M: 8.2 mg/L	M: 937 mg/L	M: 191 mg/L	M: 167 mg/L	M: 6.32 mg/L	M: 10.3 mg/L
Options A Metabolisms 0.Sele	ted Differ from target	33/4	17 M: 10.5 mg/L	M: 6.62 mg/L	M: 7.77 mg/L				M: 3.19 mg/L		M: 20 mg/L			
f Select All Unselect All In	/ert At least one c ISTOP	າ 15/1	6			M: 1.66 mg/L	M: 14.6 mg/L	M: 5.64 mg/L						
Do not account metabolism	All categories													
A Documented	A == 1 == == =													
Observed Mammalan metabolism Observed Microbial metabolism	Analogues													
Observed Rat In vivo metabolism	(67) Aldehydes													
Observed rat liver metabolism with quantitative data	(4) Reactive unspecified													
Observed Rat Liver 59 metabolism		tegories	Aldehydes (Acut.											-
✓ Simulated														1
Autoxidation simulator (alkaline medium)	1	3	Schiff base form.											
Dissociation simulator		GSH	Not possible to o											
Hydrolysis simulator (acidic)	•													· · · · · · · · · · · · · · · · · · ·
Hydrolysis simulator (basic)														
Hydrolysis simulator (neutral)														
Microbial metabolism simulator		1			Trend	d analysis predictio	n for IGC50, based	d on 71 values					Select / filter	data
Rat liver S9 metabolism simulator		1			Obse	rved: 145 mg/L; P	edicted: 101 mg/l	L La se Marca da se Marca da Se						
Skin metabolism simulator					Model equa	ition: IGC50 = 2.05 (±0.	301) + 0.395 (±0.135) *	log Kow, log(1/mol/L)					Subcategori	ze
Tautomenism	Selected 4 (67/71)	• •		•						+++		······ <u>L</u>		;
	Select different	V							• • • • • • • • • • • • • • • • • • • •			•	Mark chemicals	by WS
Chan dan Kan duna di Anna	Remove selected							•			•	Ma	rk chemicals by des	criptor value
Standardized worknows 0	Reciduals 24						• •	•	•				Mark outlie	rs
-			•	<u> </u>				•					ilter points by test	conditions
								•					Mark focused ch	emical
	53 -					\$	•	•					Mark focused p	points
			•••	•	•	-							Remove market	d data
	•												Clear existing r	narks
	2 -												Gap filling app	roach

1. Click **Select / filter data**, then **Subcategorize**; 2. Select **"MOA by OASIS"** (Note: the most suitable profilers for subcategorization are again green highlighted); 3. **Click** "Remove selected" to eliminate dissimilar to the target analogues (in this case analogues categorized as "reactive unspecified" based on MOA profiler will be eliminated)

Data Gap Filling (IGC 50 48h of *T. pyriformis*) Subcategorization 2:Protein binding by OASIS

QSAR TOOLBOX		Ê		н	01010 01 0 10100							ossa E	
Subcategorization	- 🗆 X	Data	Categ	ory definition	Data Gap Filling	Report							_
Options	Adjust options Target											for Grouping Chem into Categories	nicals
Ionization at pH = 4	Schiff base formation											Developed by LMC	, Bulga
Ionization at pH = 7.4 Ionization at pH = 9	Schiff base formation >> Schiff base for		Y	1 [target]	2	3	4	6	7	8	9	11	12
Protein binding by OASIS Protein binding OECD Protein binding poten Protein binding poten Protein binding poten	Schiff base formation >> Schiff base for			, Q	Hys Contraction	H ₃ C CH3	nc	H3C~~~~~\$~\$0	Hg6	Hys J	",c., O(_0^	H2C
Toxic hazard classificati)	IGC5	68/68	M: 145 mg/L	M: 31.7 mg/L	M: 112 mg/L	M: 3.9 mg/L	M: 7.96 mg/L	M: 8.2 mg/L	M: 937 mg/L	M: 191 mg/L	M: 167 mg/L	M: 6.
Ultimate biodeg			32/43	M: 10.5 mg/L	M: 6.62 mg/L	M: 7.77 mg/L			M: 3.19 mg/L		M: 20 mg/L		
Uncouplers (MITOTOX)	< >		13/14				M: 1.66 mg/L	M: 5.64 mg/L					
Acute aquatic toxicity classificatio	Differ from target by	city											
Acute aquatic toxicity MOA by O	At least one category ISTOPI	icity											
<	All categories	20105											
Options Options Options Options Options Options Options Options Options Options Options	Analogues												
Select All Unselect All Invert	(18) Michael addition) I
▲ Documented	(18) Michael addition >> Michael a				Trend and	lysis prediction for	IGC50 based on f	57 values			Sal	et / filter data	_
Observed Mammalian metabol	(18) Michael addition >> Michael a				Observed	: 145 mg/L; Predic	ted: 161 mg/L					ect / linter data	_
Observed Rat In vivo metabol	(3) Michael addition >> Michael ad				Model equation:	IGC50 = 2.37 (±0.242) +	0.488 (±0.107) * log K	ow, log(1/mol/L)			S	ubcategorize	
Observed rat liver metabolism	(3) Michael addition >> Michael ac						-	•		9		-handa ha MC	
Observed Rat Liver S9 metab	(16) No alert found						• •				Iviark	chemicals by ws	
Autoxidation simulator	(51) Schiff base formation	E 2		1	-	• •		•			Mark chemi	cals by descriptor v	alue
Autoxidation simulator (alkalin	(1) Schiff base formation >> Direct			- 0			•					lark outliers	
Dissociation simulator	(1) Schiff base formation >> Direct	È	-3	•		0 0	• • • • •	9				lark outliers	
Hydrolysis simulat	Selected 20 (20 (57)	- 2	1		a Q						Filter poir	ts by test condition	ns
Hydrolysis simulat in vivo Rat metal	Select different	<u>5</u> 3	8		<u> </u>	8	- 0				Mark	focused chemical	
<>	Remove selected		• •		•						Marl	focused points	
		2	•								Remo	ove marked data	

1. Select "Protein binding by OASIS";

2. Click "Remove selected" to eliminate dissimilar to the target analogues.

QSAR TOOLEOX

Data Gap Filling(IGC 50 48h of *T. pyriformis*)

Subcategorization 3: Aquatic toxicity classification by ECOSAR

QSAR TOOLBOX

Data Gap Filling (IGC 50 48h of *T. pyriformis*) Results after subcategorisation

1. Click "Accept prediction"; 2. Click "Yes" ("No" allows to continue with the subcategorization).

Data Gap Filling (IGC 50 48h of *T. pyriformis*) Evaluation of the model

- To assess the model accuracy use:
 - Adequacy (predictions after leave-one-out)
 - Statistics
 - Cumulative frequency
 - Residuals
- See next four screen shots

Data Gap Filling (IGC 50 48h of *T. pyriformis*) Evaluation of the model - Adequacy

Data Gap Filling (IGC 50 48h of *T. pyriformis*) Evaluation of the model - Cumulative frequency

QSAR TOOLEOX	Filing > Data > Category definition	01010 01 0 10100 ► Data Gap Fillin	Ig F Report	t								× e +	
Gap Filling Workflow Gap Filling Trend analysis Read across (Q)SAR Standardized Automated												The OECC for Group into Categ Develope	I QSAR Toolbox ing Chemicals jories t by I MC. Bulgaria
Occuments ♥ Document 1 * # Document 1 * @ Locument 1 * @ [C: 19Md: 175/P: 1] Aldehydes (Acute toxicity) Strict (US-EPA Nev	Filter endpoint tree	1 [target]	3 Hyc. Cong	4	7	9 *~~©_b,	17 нусо	22 HyC~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	27	31	37 *5 ^c ~~~¢ ⁰	42	48
٤ ،	Hetrahymena pyrdomis IGC50 28/2 Physiology 6/ Sediment Toxicity Human Health Hazards Profiling Predefined US-EPA New Chemical Categories General Mechanistic	9 M: 145 mg/L 8 M: 10.5 mg/L 7 • • Aldehydes (Acut.	. M: 112 mg/L . M: 7.77 mg/L	M: 3.9 mg/L M: 1.66 mg/L	M: 8.2 mg/L M: 3.19 mg/L	M: 191 mg/L M: 20 mg/L	M: 216 mg/L M: 14.9 mg/L	M: 296 mg/L . M: 18.6 mg/L	M: 148 mg/L	M: 103 mg/L M: 1.36 mg/L	M: 152 mg/L M: 9.79 mg/L	M: 104 mg/L .M: 13 mg/L M: 61 mg/L	M: 235 mg/L
Data Gap Filling Settings Only endpoint relevant At this position: Select a cell with a rigid (bold) path Automated workflows 0 Standardized workflows 0	Descriptors Prediction Adequacy Cumulative frequency Residuals Statistics		0.2	0.3	95% of Residu	als ≤ 0.492, log(1) 0.5 0.5 0.5 duals, Y - Y.calc	/mol/L)	0.7	0.8	0.9		Select / filter Subcategor Mark chemicals ark chemicals by dee Mark outlie Filter points by test Mark focused of Mark focused Remove marke Clear existing of Gap filling app	data ce by WS by WS conditions eenical d data d data d data recircition
1. Click "Cun analogues are	nulative freque e comparable wit	ncy" th the	; The expe	resid rimer	uals a ntal ei	ibs (o rror.	bs-pre	edicte	d) for	- 95%	of		×

Data Gap Filling (IGC 50 48h of *T. pyriformis*) Evaluation of the model - Residuals

	filing > Data > Category definition	01010 01 0 10100 ► Data Gap Fillir	ng Frepor	t								Xeh	
Gap Filling Workflow Image: Standardized Automated Image: Standardized Automated												The OECD for Groupi into Categ	QSAR Toolbox ing Chemicals jories
Documents	Filter endpoint tree	ү 1 [target]	3	4	7	9	17	22	27	31	37	42	48
Cocument 1 // # [C: 1Md: 3P: 1] CAS: 98011 // # [C: 10Hd: 175/P: 1] Aldehydes (Acute toxicity) Strict (US-EPA Nev // ■ [C: 274/dd: 135/P: 1] Inter GF(TA) // ■ [C: 684/dd: T25/P: 1] Subcategorized: Acute aquatic toxicity // ■ [C: 274/dd: 63/P: 1] Subcategorized: Acute aquatic toxicity // ■ [C: 274/dd: 63/P: 1] Subcategorized: Acute aquatic toxicity // ■ [C: 274/dd: 63/P: 1] Subcategorized: Acute aquatic toxicity // ■ [C: 274/dd: 63/P: 1] Subcategorized: Acute aquatic toxicity // ■ [C: 274/dd: 63/P: 1] Subcategorized: Acute aquatic toxicity // ■ [C: 274/dd: 63/P: 1] Subcategorized: Acute aquatic toxicity // ■ [C: 274/dd: 63/P: 1] Subcategorized: Acute aquatic toxicity // ■ [C: 274/dd: 63/P: 1] Subcategorized: Acute aquatic toxicity // ■ [C: 274/dd: 63/P: 1] Subcategorized: Acute aquatic toxicity // ■ [C: 274/dd: 63/P: 1] Subcategorized: Acute aquatic toxicity // ■ [C: 274/dd: 63/P: 1] Subcategorized: Acute aquatic toxicity // ■ [C: 274/dd: 63/P: 1] Subcategorized: Acute aquatic toxicity // ■ [C: 274/dd: 63/P: 1] Subcategorized: Acute aquatic toxicity // ■ [C: 274/dd: 63/P: 1] Subcategorized: Acute aquatic toxicity // ■ [C: 274/dd: 63/P: 1] Subcategorized: Acute aquatic toxicity // ■ [C: 274/dd: 63/P: 1] Subcategorized: Acute aquatic toxicity // ■ [C: 274/dd: 63/P: 1] Subcategorized: Acute aquatic toxicity // ■ [C: 274/dd: 63/P: 1] Subcategorized: Acute aquatic toxicity // ■ [C: 274/dd: 63/P: 1] Subcategorized: Acute aquatic toxicity // ■ [C: 274/dd: 63/P: 1] Subcategorized: Acute aquatic toxicity // ■ [C: 274/dd: 63/P: 1] Subcategorized: Acute aquatic toxicity // ■ [C: 274/dd: 63/P: 1] Subcategorized: Acute aquatic toxicity // ■ [C: 274/dd: 63/P: 1] Subcategorized: Acute aquatic toxicity // ■ [C: 274/dd: 63/P: 1] Subcategorized: Acute aquatic toxicity // ■ [C: 274/dd: 63/P: 1] Subcategorized: Acute aquatic toxicity // ■ [C: 274/dd: 63/P: 1] Subcategorized: Acute aquatic toxicity // ■ [Structure		Hyc CH3	********	4500000	14-0-0-0-	H3C	Hyc	~0	9	HgC	НзС	
C. 28;Md: 63;P: 1] Subcategorized: Aquatic toxi	Ciliophora											_	
	Tetrahymena pyriformia	20 M 145 mg/l	M: 112 mg/l	Mi 2.0 mg/l	M: 9.2 mg/l	M 101 mg/l	M. 216 mg/l	Mi 205 mg/l	M: 149 mg/l	M: 102 mg/l	Mi 152 mg/l	M: 104 mg/l	Mr 225 mg/l
		29 M: 145 mg/L 28 M: 10.5 mg/L	M: 112 mg/L M: 7.77 mg/L	W: 5.9 mg/L	M: 0.2 mg/L M: 3.19 mg/L	M: 191 mg/L M: 20 mg/L	M: 216 mg/L M: 14.9 mg/L	M: 296 mg/L M: 18.6 mg/L	W: 146 mg/L	M: 105 mg/L M: 1.36 mg/L	M: 152 mg/L M: 9.79 mg/L	M: 104 mg/L M: 13 mg/L	WI: 255 mg/L
	Physiology 6	/7		M: 1.66 mg/L								M: 61 mg/L	
	Sediment Toxicity	·											
	Human Health Hazards												
	Profiling												
	Predefined	Aldohudos (Asut											_
	General Mechanistic	Aldenydes (Acut											v
<	< II'												>
Data Gap Filling Settings	Descriptors			Dist	ribution of residu	als for IGC50 vs de	escriptors in use					Select / filter	data ^
	1-			•								Sciect / Intel e	
	Prediction											Subcategori	ze
At this position:	Adequacy											Mark chemicals	by WS
Automated workflows	2										N	lark chemicals by des	criptor value
Standardized workflows	mulative frequency											Mark outlie	rs
	Residuals									•		Filter points by test	conditions
	Statistics	•		•				• •				The points by test	conditions
		•	•									Mark focused ch	emical
	200			• •		_	•	•				Mark focused p	points
	<u> </u>			•			•					Remove marker	d data
					0							Clear existing r	narks
	-0.5											Gap filling app	roach
	0.5	1	1	.5	2	2.5	3	3.5	4	4.5	÷ + + - +	Accort p	v
						iog now						Accept pr	ediction v
28													×
							,]						
		1.	CIICk	⊂"Ke	sidu	iais"							

April, 2020

QSAR TOOLEOX

Data Gap Filling (IGC 50 48h of *T. pyriformis*) Evaluation of the model - Statistics

	n filing > Data	Category definition	01010 01 0 10100 ► Data Gap Filli	ing > Repor	t								Xet	
Gap Filling Workflow Gap Cap Cap Cap Cap Cap Cap Cap Cap Cap C													The OEC for Group into Cate Develope	D QSAR Toolbox ping Chemicals gories ed by LMC, Bulgaria
Descurt	Filter endpoint tree	Ÿ	1 [target]	3	4	7	9	17	22	27	31	37	42	48
	Structure		~	Hyc CH3	16	5000000	ni-O-bi	нус	Hycorroto	√ Ô	-9	нзс	о H3C~~~~	". "
[2] [C: 28;Md: 63;P: 1] Subcategorized: Aquatic toxi	48 h	iliophora Ciliatea Tetrahymena pyriformis	M. 145	Nr 112 (1	M-20		M 101 (1	M 216 mm //	M-206-rrs/l	M. 140 0	M 102 //	M: 152 //	No. 104 //	M 225 m /
		IGC50 28/25	9 WI: 145 mg/L	_M: 112 mg/L	M: 5.9 mg/L	IVI: 6.2 mg/L	M: 191 mg/L	M: 210 mg/L	WI: 296 mg/L	WI: 146 mg/L	M: 105 mg/L	WI: 152 mg/L	M: T04 mg/L	WI: 255 mg/L
	+ Mortality	19/28	3 M: 10.5 mg/L	_M: /.// mg/L		M: 3.19 mg/L	M: 20 mg/L	M: 14.9 mg/L	M: 18.6 mg/L		M: 1.36 mg/L	M: 9./9 mg/L	M: 13 mg/L	·
	└─!±! Physiology	6/7	′		M: 1.66 mg/L								M: 61 mg/L	_
	Sediment loxic	ity	•											-
	Terrestrial Toxic	ity	-											~
	`													Ív
	Descriptors	Statistical characteristics					TA model						Select / filter	r data
	Descriptors	Number of data points. (N)					27					~	Sciect / Inter	dota
< >>	Prediction	Coefficient of determination.	(R2)				0.802						Subcatego	rize
Data Care Elline Cathliner	Treatedon	Adjusted coefficient of deter	mination. (R2adi)				0.795							
Data Gap Thing Settings	Adequacy	Coefficient of determination	- leave one out, (Q2)			N/A						Mark chemical	s by WS
Only endpoint relevant		Sum of squared residuals, (SS	SR)				2.29						Mark chemicals by de	ascriptor value
As all in an address	Cumulative frequency	Standart deviation of residua	ls, (sN)				0.291						work chemicals by at	escriptor value
At this position:		Sample standart deviation of	residuals, (s)				0.303						Mark outli	iers
QSARs	Residuals	Fisher function, (F)					102							
Automated workflows 0 Standardized workflowr 0		Fisher treshold for statistical	significance, (Fa)				5.69 (95.0%)						Filter points by tes	t conditions
Standardized Worknows 0	Statistics												Mark focused o	themical
In nodes below:														
QSARs 0		bU					later at						Mark focused	points
Automated workflows 0		- model descriptor					intercept						Remove marke	ed data
Standardized workflows U		- coeff, value					+0.256							
		- significance					No						Clear existing	marks
		- max covariation					0.249 vs log Kow							
													Gap filling ap	proach
		b1											Descriptors /	/ data
		- model descriptor					log Kow							
		- coeff. value					0.520						Model/QS	AR V
		- coeff. range					±0.106						1	
		- significance						I				~	Accept p	prediction
28			1. (Click	"Sta	tisti	cs″	1						×

QSAR TOOLEOX

Data Gap Filling (IGC 50 48h of *T. pyriformis*) Results after subcategorisation

	Find P Data Category definition	01010 01 0 10100 > Data Gap Filling	Report								× (
Gap Hiling Workflow											for Gi into C	rouping Chemicals Categories
Trend analysis Read across (Q)SAR Standardized Automated			2	2	1	c	c	7	0	0	Devel	oped by LMC, Bulgari
Occuments Document 1 # [C: 11,Md: 3;P: 1] CAS: 98011 ■ [C: 101,Md: 175;P: 1] Aldehydes (Acute toxicity) Strict (US-EPA1) # [E: C: 27,Md: 135;P: 1] Fubre GF(IA) # [E: C: 27,Md: 155;P: 1] Subcategorized: Acute aquuitic toxicity A [E: C: 20,Md: 6PA: 1] Subcategorized: Potentia priorition but O	hilter endpoint tree		4 Hyd - C - C - C - C - C - C - C - C - C -	Hyc (H3	*	Нус	50	*	-3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	,	
 Gr (c. 28)Md: 63/F 1] Subcategorized: Protein binang yo o C. 28/Md: 63/F 1] Subcategorized: Aquatic toxicity d 	Structure info Tranneters Physical Chemical Properties Environmental Fate and Transport Cotoxicological Information Aquatic Toxicity Awd SV Growth Growth Protozoa Ciliophora Ciliophora Ciliophora	v.										
C Data Gap Filling Setting:	IdC50 7	M: 145 mg/L T: 268 (60.2+1.2E+03) mg/L	N 31.7 mg/L	M: 112 mg/L	M: 3.9 mg/L	M: 14 mg/L	M: 7.96 mg/L	M: 8.2 mg/L	M: 937 mg/L	M: 191 mg/L		M: 167 mg/L
Only endpoint relevant At this position: Select a cell with a rigid (bold) path Automated workflows 0 Standardized workflows 0	Mortality 60/ Physiology 19/ Sediment Toxicity Human Health Hazards Profiling	M: 10.5 mg/L 22	_M: 6.62 mg/L	M: 7.77 mg/L	M: 1.66 mg/L	M: 14.6 mg/L	M: 5.64 mg/L	M: 3.19 mg/L		M: 20 mg/L	M: 5.01 mg/L	
	×											×

Data Gap Filling (IGC 50 48h of *T. pyriformis*) Save the derived QSAR model

- To save the new regression model follow these steps:
 - Go to the last row on the Document tree
 - Click on "Model/QSAR"
 - Select Save model
 - Enter the model name and fill editable fields if necessary
 - Click on OK

Data Gap Filling (IGC 50 48h of *T. pyriformis*) Save the derived QSAR model

ſ			1 🗗		01010 01 0		_									Xe	5 ≥ 0 ⊒ 4
	Ustomize model content																- <u></u>
	Wizard pages	2														The OEC for Grou into Cate	D QSAR Toolbox ping Chemicals egories
Tr																Develop	ed by LMC, Bulgaria
	QSAR Identity General information	QSAR Title/Caption Version Other related models	IGC50 pyriformi	5, Growth 48h		^		7 [] Informat	9 ion	17	22	27 ×		31	37 *sc~~~~o	42 H3C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	48
	Defining the endpoint – OECD Principle 1 Defining the algorithm – OECD Principle 2	Software implementing the model	Automatically pop	ulated by the system				Th	e model was	saved succ	essfully!						
	Applicability domain – OECD Principle 3						mg/L	1VI: 3.19 mg/c	MI 20	y mgr	.141: 10:0	OK mg/t	48 mg/L	M: 103 mg/L M: 1.36 mg/L	M: 152 mg/L M: 9.79 mg/L	M: 104 mg/L M: 13 mg/L M: 61 mg/L	M: 235 mg/L
	Training set and statistics – OECD Principle 4																
	External validation and predictivity – OECD Principle 4					_											, , ,
	Mechanistic							Act	ive descriptors							1	data 🄶
	interpretation -					3		Data points		Con	elation			Information			roach
	OECD Principle 5)	27		0.89	5						tors (data
		I					1										
				Back Ne	ext Cancel	Save model			Il descriptors							Mod	el/QSAR
			cumulative inequency	News			11-14	^	il descriptors		1					Show	v domain
			Residuals	(O) Acidic pKa (Chemaxon)			Unit				Intor	mation					1
			Charlinting	(Q) Basic pKa (Chemaxon)												Save	e model
			Statistics	Acidic pKa (OASIS Consensu	is)											Save doma	ain as category
				Acidic pKa (OASIS Electric)												Calc	ulate O2
				Acidic pKa (UASIS Regressio	on) pression)												
				BAF	g. 235.011/		log(L/kg)									Calculat	tion options
				BAF (lower trophic)			log(L/kg)									Visua	I options
				BAF (mid trophic)	-		log(L/kg)										
L				BAF (upper trophic)	formation rate is zo1		log(L/kg)									- V 🗸 🗸	ept prediction
				. ner Junner tronnic biotrans	and a second the second		a stu zeni										~

1. Click "Model/QSAR", then "Save model"; 2. Type name of the model and fill the fields in the wizard if necessary (Use Next/Back buttons to navigate within it); 3. Click "Save model"; 4. Click OK.

Outlook

- Background
- Keywords
- Objectives
- The exercise
- Workflow of the exercise
 - Input
 - Profiling
 - Data
 - Category definition
 - Data gap filling
 - QSAR model

Data Gap Filling How to see the derived QSAR?

	rp A		Details for 23	(Q)SAR models									¥		×
		10100	QSAF	Rname	#	Predicted		llass	Domain	Duration	Effect	Endpoint	Fisher	Kingdom	^
J ► Input	Profiling Data	Category definition	Repo Fathead minnow !	96h LC50 - Danish		0.1.60	Actinopter	ygii (ray-				1050			4
GWorkflow			OCAR DR SHOCA	Denseded (1.0)	14	Out of Domain	finned fish	es,spiny rayed	Out of domain	96 h	Mortality	LCSO	_	Animalia (anir	<u>í</u>
📨 🔛 💀 😪 😒	1		IGC50 T.pyriformi	s, Growth 48h (1.0)	15	268 mg/L	Ci	liatea	In domain	48 h	Growth	IGC50	102	Protozoa	
Trend analysis Read acrost (Q)SAR Standardized Automated	•					-									ria
Desiments	ndpoint tree	🍸 1 [target]	2 M1 - LC50 - Pime (fathead minnow)	phales promelas (1.0)	16	1.6 mg/L		set	to an instance of	96 h	Mortality	LC50	192		^
ocument 1			M2 - 1050 - Pime	A shaler prometer		$\left(\begin{array}{c} - \end{array} \right)$		Obj	ect reference not						-
(C. 1,1/d.2,0.1) CAC-00011 and an an an an an an an and an an an and an		D D	(fathead minnow)	(1.0)	17	4		set	to an instance of object.	96 h	Mortality	LC50	998		
✓ [C: 101, Md: 173, F: 1] Aldenydes (Active toxicity) strict (03-EF ✓ III [C: 72; Md: 135; P: 1] Enter GF(TA)	Structure		M3 - LC50 - Pime	phales promelas	10	l T J		Obj	ect reference not	06 h	Mastality	1050	661		1
「Q IC: 08/Md: 125/P: 1」Subcategorized: Acute aquatic toxicit			(fathead minnow)	(1.0)	10			an	object.	5011	wortaity		001		-
[] [C: 28;Md: 63;P: 1] Subcategorized: Protein binding by	/ class 🕂 Structure info		M4 - LC50 - Pime	phales promelas	19	167 mg/L		Obj	ect reference not to an instance of	96 h	Mortality	LC50	762		
	Parameters		(latiead miniow)	(1.0)				an Obi	object. « ect reference not			Toxicity or			-
	Physical Chemical Properties	-	Photoinduced to	icity of PAHs (1.0)	20	Not Phototoxic		set	to an instance of		Photoinduced Toxici	y Daphnia			
	Environmental rate and Transpo		Pseudokirchneriel	la s 72b EC50 -				an	object. x			magna	A		1
		A	Danish QSAR DB	battery model (1.0)	21	Out of Domain			Out of domain	72 h	Growth Inhibition	EC50			
	Growth	2	Pseudokirchneriel Danish OSAR DR	la s. 72h EC50 -	22	Out of Domain			Dut of domain	72 h	Growth Inhibition	EC50			
		4	(1.0)	4 701 5050		001010011011									
	Ciliophora		< Pseudokirchherie	la s. 72h EC50 -										>	Č.
	Ciliatea		Find	Show only chemi	iical releva	nt (Q)SARs								Run Cancel	
	- Tetrahyr	mena pyriformis													_
		M: 145 mg/L	M: 31.7 mg/L	M: 112 mg/L	M: 3	.9 mg/L M: 1	4 mg/L	M: 7.96 mg/L	M: 8.2 mg	'L M: 93	7 mg/L M: 19	1 mg/L		M: 167 mg/L	
<		50 72/73 1: 208 (60.2+1.2E+03) mg/	L												
Data Gap Filling Settings	Intoxication	1/1													
	+ Mortality	60/80 M: 10.5 mg/L	M: 6.62 mg/L	M: 7.77 mg/L					M: 3.19 m	g/L	M: 20	mg/L	M: 5.01 mg/L		
Only endpoint relevant	Let Physiology	19/22			M: 1	.66 mg/L M: 1	4.6 mg/L	M: 5.64 mg/L							
At this position:	Terrestrial Toxicity				-										
Select a cell with a rigid (bold) path	+ Human Health Hazards														
Standardized workflows 0	Profiling														
															_
1 Coloct a non Can	filling light from	the decurrent	had the		No	to the		onto	d	dict	ion wi	ll he	inco	wto d	
1. Select a non-Gap	ming list from	i the document	leu tree	Ξ, Ζ.	110	te the	acc	epte	u pre	anct	ION WI	n be	Inse	erted	
into data matrix 3 (lick "(O)SAP	"· 4 The deriv	DA DS	AR is	lict	od in	tho	nane	l wit	h Re	lovant	- (0)	SAR		
			cu yar	1113	1130		the	pane			acvan	- ()	JUAN		

models.

Data Gap Filling How to see the derived QSAR?

As seen in the next five screen shots the derived model can be used to:

- Visualize training set of the model;
- Visualize the domain of the model;
- Visualize whether a chemical is in the domain of the model;
- Enter in Data Gap filling;
- Perform predictions for:
 - Selected chemical
 - All chemicals (in the matrix)
 - Chemicals in domain.

Data Gap Filling Visualisation of the training set

Details for 23 (Q)SAR models						
QSAR name		Predicted	Class	Domain	Duration	Effect
athead minnow 96h LC50 - Dani QSAR DB SciQSAR model (1.0)	1	Out of Domain	Actinopterygii (ray- finned fishes,spiny rayed fishes)	Out of domain	96 h	Mortality
GC50 T.pyriformis, Growth 48h (1.0)	15	268 mg/L	Ciliatea	In domain	48 h	Growth
11 - LC50 - Pimephales promelas iathead minnow) (1.0)	Сору с Сору	ell 🔸		Object reference not set to an instance of	96 h	Mortality
M2 - LC50 - Pin fathead minno	About Display	y Domain		Object reference not set to an instance of an object.	96 h	Mortality
M3 - LC50 - Pin fathead minnow) (1.0)	Show t Show t	training set test set		Object reference not set to an instance of an object.	96 h	Mortality
M4 - LC50 - Pimephales promelas fathead minnow) (1.0)	Delete	all predictions		Object reference not set to an instance of an object.	96 h	Mortality
hotoinduced toxicity of PAHs (1.0)	20	Not Phototoxic		Object reference not set to an instance of an object.		Photoinduced Toxicity
Pseudokirchneriella s. 72h EC50 - Danish QSAR DB battery model (1.0)	21	Out of Domain		Out of domain	72 h	Growth Inhibition
Pseudokirchneriella s. 72h EC50 - Danish QSAR DB Leadscope model (1.0)	22	Out of Domain		Out of domain	72 h	Growth Inhibition
Pseudokirchneriella s. 72h EC50 -						
Find Show only chemi	al releva	nt (Q)SARs	_			
· · · ·						

1. Right click on the derived **QSAR model**; 2. Select **Show training set**; 3. Note the experimental data is displayed under CAS# of each chemical; 4. The training set can be saved as *.smi file.

Data Gap Filling Visualisation of model domain

Details for 23 (Q)SAR models					-	Evelopation for Domain > Domain		1 ~
QSAR name	1	Predicted	Class	Domain	Durati	Categories	Definition Dranautice Training Set Literature Metalofa Table Curtan Captions Scheme	
Fathead minnow 96h LC50 - Danish QSAR DB SciQSAR model (1.0)	14	Out of Domain	Actinopterygii (ray- finned fishes,spiny rayed fishes)	Out of domain	96 h	Filter:	Category tree [1] Domain	
IGC50 T.pyriformis, Growth 48h (1.0)	15	268 mg/L	Ciliatea	In domain	48 h	Domain		ADD
M1 - LC50 - Pimephales promel (fathead minnow) (1.0) M2 - LC50 - Pimephales prome (fathead minnow) (1.0) M3 - LC50 (fathead m 2	Copy ce Copy About Display Show tr Show te Delete	Domain aining set st set		Object reference not set to an instance of an object. Object reference not set to an instance of an object. Object reference not set to an instance of an object. Object reference not	96 h 96 h 96 h			DEL AND OR NOT
M4 - LCS0 (fathead milliow) (1.0) Photoinduced toxicity of PAHs (1.0) Pseudokirchneriella s. 72h EC50 - Danish OSAR DB battery model (1.0)	20 21	Il predictions Not Phototoxic Out of Domain		Object reference not set to an instance of an object. " Object reference not set to an instance of an object. " Out of domain	96 h 72 h	Explanation	AND AND AND E	Paste Redraw
Pseudokirchneriella s. 72h EC50 - Danish QSAR DB Leadscope model (1.0) Pseudokirchneriella s. 72h EC50 -	22	Out of Domain		Out of domain	72 h	Profiler: US-EPA New Chemical Categories Acid Chlorides Acrylamide Acrylates/Nethacrylates (Acute toxicity) Aliphatic Amines Alutativus (Comencedet Alutativus (Comencedet	Profiling schemes Profiling schemes Custom Endpoint Specific General Mechanistic General Mechanistic Profilemed Profil	
	icai rereva					Anilines (Acute toxicity) Azides (Acute toxicity) Benzotriazole-hindered phenols Boron Compounds Cationic (quaternary ammonium) surfactants Cobalt Diazoniums (Acute toxicity) Epoxides Exters (Acute toxicity) Hydrazines and Related Compounds Hindered Ammes Imides (Acute toxicity) Lanthanides or Rare Earth Metals	Database Affiliation Inventory Affiliation OECD HPV Chemical Categories Substance type US-EN New Chemical Categories Image: Toxicological Image: Toxicological <td></td>	

1. Right click on the derived **QSAR model**; 2. Select "**Display Domain**"; 3. Note the boundaries of the domain are combined logically; 4. If the chemical answers the query of the domain then the current query is a labelled with **GREEN** tick; 5. Otherwise is labelled with **RED** cross.

Visualisation of whether a chemical is in the domain of the model

Q	SAR TOOLBO	X	(+)		Ê		H	01010 01 0 10100						×	: ● ◆ ◆ ③ □ • ●	
			Input	Profiling	► Data	Categor	y definition	Data Gap Filling	Report						<u>-</u>	
Trend	Gap Filling	Stand	Workflow	ed										Th foi int	e OECD QSAR Tool r Grouping Chemica o Categories	oox als
		Standa		Eilter endpoint tr	·	T	1 [target]	2	3	4	5	6	7	De 8	veloped by LMC, B	ulgari 10
\circ	Documents	5		rinter endpoint ti	ee	1	i [target]	-			-	ř.	· · · · · · · · · · · · · · · · · · ·		-	
CAS:	Details for 21 (Q)SAR models							- 🗆 ×	CH3				1			
	QSAR name		Predicted	Class	Domain	Duration	Effect	Endpoint	^ H3C 0	*************	HgC 0	HyC~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	H30	Hype QN	Hat.	
⊿ 8	Fathead minnow 96h LC50 - Danish QSAR DB Leadscope model (1.0)	11	13.8 mg/L	finned fishes, spiny rayed fishes)	In domain	96 h	Mortality	LC50						Ì	65	
	Fathead minnow 96h LC50 - Danish QSAR DB SciQSAR model (1.0)	12	13.3 mg/L	Actinopterygii (ray- finned fishes,spiny	In domain	96 h	Mortality	LC50	6H12O	C11H22O	C4H6O	C8H14O	C10H20O	C5H6N2O	C9H10O3 Mono constituent	C14
	IGC50 T.pyriformis, Growth 48h (1.	Copy cell			Out of domain	48 h	Growth	IGC50	CC(C	1		_		Cc1[nH]cnc1C=O	COc1ccc(C=O)c(CC
	M1 - LC50 - Pimephales promelas (fathead minnow) (1.0)	Copy About		4	Object reference not set to an instance of an object.	96 h	Mortality	LC50	The defin	ed target chemical is r	ot active. Do you wan	t to continue with a dif	ferent 3			-
	M2 - LC50 - Pimephales promelas (fathead minnow) (1.0)	Display D Show trai	Domain ining set		Object reference not set to an instance of an object.	96 h	Mortality	LC50)		—
<	M3 - LC50 - Pimephales promelas (fathead minnow) (1.0)	Show tes Delete	t set		Object reference not set to an instance of an object.	96 h	Mortality	LC50				Yes	No			
0	M4 - LC50 - Pimephales promelas (fathead minnow) (1.0)	Delete al	12.1 mg/L		Object reference not set to an instance of an object.	96 h	Mortality	LC50					1			
	Photoinduced toxicity of PAHs (1.0)	18	Not Phototoxic		Object reference not set to an instance of	ţ	hotoinduced	Tovicity on Danhnia ma	v 112 4	M 20 //	M 14 ()	N 705 - 11		M 027 //	M 101 //	
	Find 🗹 Show only chemi	cal relevant ((Q)SARs					Run Cancel	1: 112 mg/L	M: 3.9 mg/L	M: 14 mg/L	M: 7.96 mg/L	1: 8.2 mg/L	M: 937 mg/L	M: 191 mg/L	
	Automated worknows								T							
	Standardized worknows			- ti Interio	ration	1/										-
				+ Morta	lity	60/80	M: 10.5 m	n/l M: 6.62 mg/l	M: 7.77 mg/l				M: 3.19 mg/l		M: 20 mg/l	M
				+ Physic	loav	19/22				M: 1.66 mg/L	M: 14.6 mg/L	M: 5.64 mg/L				
				- Sediment	Toxicity											

1. Highlight the cell of one of the analogues (e.g., chemical # 6 in the data matrix; 2. Click on "(Q)SAR"; 3. A message informs you that the QSAR is applied not on the target chemical. Click Yes; 4. Right click above the model and Left click on Display domain (see next screen shot).

Visualisation of whether a chemical is in the domain of the model

- The chemical is an "aldehyde" as required by US-EPA categorization group (boundary 1 on next screen shot).
- The chemical is an "aldehyde" as required by Acute aquatic toxicity MOA by OASIS group (boundary 2) and to be not "reactive unspecified" (boundary 3)
- It can react with protein by Schiff-base formation (boundary 4) and should not belong to any of the eliminated mechanistic domains according to Protein binding by OASIS (boundary 5):
 - Michael addition (α,β-Aldehydes, Conjugated systems with electron withdrawing groups) (boundary 5)
 - SNAr (Activated aryl and heteroaryl compounds) (boundary 5)
 - Schiff base formation (Bis aldehydes, Di-substituted α,β-unsaturated aldehydes and Aromatic carbonyl compounds) (boundary 5)
- The chemical should be an "aldehyde" as required by Aquatic toxicity classification by ECOSAR (boundary 6) and not to be "imidazoles" (boundary 7).
- Another requirement is Log Kow to be >=0.308 and <=4.77 (boundary 8):

Visualisation of whether a chemical is in the domain of the model

Categories	Definition Properties Training Set Literature				
Filter	(1) Domain	ory tree			
Domain Domain				2	
			Explanation for: Domain -> Domain	Z	
	(CRAD) (CRAD) (CRAD) (CRAD) (CRAD)), () () (. .	Categories	Definition Properties Training Set Literature MetaInfo Table	e
		$\sim \sim \sim$	Filter	Cat	egory tree
		٩ 👗	Domain Domain	[1] Domain	
	NOT NOT	AND 3			
Explanation	Query	y details			AND
Profiler: Protein binding by OASIS	[7] Reference Query Metabolism	Coloring and an ender			
Acylation >> (Tio)carbamoylation of protein nucleophiles > Schiff base formation	Proming schemes	Minhael addition			
Schiff base formation >> Schiff base formation with carbon	Empiric	Michael addition >>	Explanation	Qu	ery details
Schiff base formation >> Schiff base formation with carbon	Endpoint Specific General Machanistic	<	Profiler: Aquatic toxicity classification by ECOSAR	[10] Reference Query Metabolism	
Schiff base formation >> Schiff base formation with carbon	Biodeg BioHC half-life (Biowin)	L	Acid Halides	Profiling schemes	Selected categories
Schiff base formation >> Schiff base formation with carbon Schiff base formation >> Schiff base formation with carbon	Biodegradation primary (Biowin 4)		Acid molety Acrylamides	D Custom	Aldehydes (Mono)
Schiff base formation >> Benzoyl Schiff base formation	Biodegradation probability (Biowin 1) Biodegradation probability (Biowin 2)	Available categories	Acrylates	Empiric A Endpoint Specific	
Schiff base formation >> Benzoyl Schiff base formation >>	Biodegradation probability (Biowin 5)	(N/A)	Aldehydes (Mono) Aldehydes (Poly)	Acute aquatic toxicity classification by Verhaar (Modified)	
Schiff base formation >> Direct acting Schiff base formers	Biodegradation probability (Biowin 6)	Acvlation	Aliphatic Amines	Acute aquatic toxicity MOA by OASIS Acute Oral Toxicity	
Schiff base formation >> Direct acting Schiff base formers >-	Biodegradation probability (Biowin 7)	Acylation >> (Tio)ca	Alkoxy Silanes	Aquatic toxicity classification by ECOSAR	
Schiff base for a work >> schift base on pyrea, lones and py	DNA binding by OASIS	A to the second	Amides Anilines (amino-meta)	Bioaccumulation - metabolism alerts	Available categories
Schur base formation >> Schiff base on pyrazolones and the	DHALL F. L. OFOD	×	Anilines (amino-ortho)	Bioaccumulation - metabolism hait-lives Biodegradation fragments (BioWIN MITI)	(N/A)
Michael addition >> Michael addition on alpha heta-Unsati	Multiple categories		Anilines (amino-para) Anilines (Hindered)	Carcinogenicity (genotox and nongenotox) alerts by ISS	Acid Halides
tichael addition >> Michael addition on alpha,beta-Unsat	Strict OR-ed AND-ed		Anilines (Unhindered)	DART scheme DNA slotts for AMES_CA and MNT by CASIS	Acid molecy
Contraction of the second seco			Aziridines	Enclote the formation of the formation o	
			Benzodioxoles Benzotriazoles	Multiple categories	
			Benzovlcvclohexanedione	Strict OP of AND of	

The target chemical is out of the model domain due to:

- 1) Belonging to "Michael addition" mechanism by "Protein binding by OASIS" profiler, which have been
- eliminated from the domain (negated by logical "NOT") (boundary 5)
- 2) The chemical is not an "aldehyde" as requested by ECOSAR profiler (boundary 6).

The definitive designation for belonging or not to the domain is the collectible boundary (3) which is red crossed in case of "Out of domain" (green checked in case of "In domain")

QSAR TOOLEOX

Data Gap Filling Enter Gap filling

Details for 23 (Q)SAR models		-		•		×								×) A A () 100
QSAR name	#	Predicted	Domain	Class	Database	ort									
Fathead minnow 96h LC QSAR DB Leadscope mo	3	No prediction	Out of domain											The C for G into C	ECD QSAR Toolbox ouping Chemicals ategories
Fathead minnow 96h LCs QSAR DB SciQSAR model (1	14	No prediction	Out of domain				3	4	5	6	7	8	9	Devel	oped by LMC, Bulga 11
IGC50 T. pyriformis Growth 48 h (1.0)	15	268 mg/L	In domain	Ciliatea	Aquatic OASIS		H-G	*~~~~~*	НуС	140~~~~=	"y~~~~~d*	Q	ne Q^	, r å×	
M1 - LC50 - Pimephales promelas (fathead minnow) (1.0)	16	71.6 mg/L	In domain										j.		
M2 - LC50 - Pimephales promelas (fathead minnow) (1.0)	17	372 mg/L	In domain					Selection	QSAR method		×				
M3 - LC50 - Pimephales promelas (fathead minnow) (1.0)	18	865 mg/L	In domain				3								
M4 - LC50 - Pimephales promelas (fathead minnow) (1.0)	19	167 mg/L	In domain						 Enter Gap filli Predict select 	ng ed chemical					
<	-			2	>	>			Predict all che Predict chem	emicals icals in domain					
Find Show only che	mical n	elevant (Q)SARs		<u> </u>	Run Cancel	4: 31.7 mg/L	M: 112 mg/L				ng/L	M: 937 mg/L	M: 191 mg/L		M: 167 mg/L
<		>		IGC50	72/73 T: 268 (60.2÷1.2E+03) mg/	1		4 ()K Ca	ncel				
🔿 Data Gap Fillin	g Setting	gs	+ Intoxication + Mortality		1/1 60/80 M: 10.5 mg/L	M: 6.62 mg/L	M: 7.77 mg/L				M: 3.19 mg/L		M: 20 mg/L	M: 5.01 mg/L	
Only endpoint relevant			Physiology Sediment Toxicity		19/22			M: 1.66 mg/L	M: 14.6 mg/L	M: 5.64 mg/L					
At this position:			Terrestrial Toxicity												
Automated workflows		0	 Human Health Hazard Profiling 	s											
Go to ta	arc	jet cher	nical and	call (Q)SAR;										>
1. Selec	ct 1	the mod	lel: 2. Cli	ck Rùn	: 3. Select	Enter	Gan	filling	: 4. (Click C)K: Th	en vo	ou will	be	×
trancfor	ro	d autor	natically t	o Can	filling and		norate) (not	chow	n).				20	
uansie	re	u autor	natically t	.0 Gap	ming and		perate		SHOW	II),					

Perform prediction for chemicals in domain (for selected chemical and all chemicals - analogically)

				*			01010										×) 😚 🤌 🕕
Details for 23 (Q)SAR models							- 🗆	×	4									22
QSAR name Fathead minnow 96h LC	#	Predicted	Domain		Class		Database	^	ort								The C for G	ECD QSAR Toolbox rouping Chemicals
QSAR DB Leadscope mc	P	No prediction	Out of domain														into C	ategories
Fathead minnow 96h LC QSAR DB SciQSAR moder	4	No prediction	Out of domain							3	4	5	6	7	8	9	Devel 10	oped by LMC, Bulgaria 11
IGC50 T. pyriformis Growth 48 h (1.0)	15	268 mg/L	In domain		Ciliatea	3	Aquatic OAS	IS	44 - O	HgC CH3	***********	нус	H3C~~~~\$\$\\$O	*yc~~~~_a#0	ngc 9	14-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	LOX.	_0^
M1 - LC50 - Pimephales promelas (fathead minnow) (1.0)	16	71.6 mg/L	In domain									Select	QSAR method	- [x c			
M2 - LC50 - Pimephales promelas (fathead minnow) (1.0)	17	372 mg/L	In domain									_						
M3 - LC50 - Pimephales promelas (fathead minnow) (1.0)	18	865 mg/L	In domain										 Enter Gap fi Predict sele 	lling cted chemical				
M4 - LC50 - Pimephales promelas (fathead minnow) (1.0)	19	167 mg/L	In domain						n		<u> </u>		Predict all chemicals Predict chemicals					
<	1				2			>						nicais in donie				
Find 🗹 Show only cher	nical r	relevant (Q)SARs			4	\geq	Run C	ancel	Л: 31.7 mg/L	M: 112 mg/L	M: 3.9 mg/L)			M: 191 mg/L		M: 167 mg/L
<u> </u>				tion		1/1						4		ОК	Cancel			
Data Gap Filling	j Settin	ngs	- + Mortali	ty		60/80	M: 10.5 mg/L		M: 6.62 mg/L	M: 7.77 mg/L		\frown)	wi: p. ra mg/ c		M: 20 mg/L	M: 5.01 mg/L	
Only endpoint relevant				ogy Foxicity		19/22					M: 1.66 mg/L	M: 14.6 mg/L	M: 5.64 mg/L					
Select a cell with a rigid (bold) path			Terrestrial	Toxicity		1												
Automated workflows Standardized workflows		0	Human Health Profiling	Hazards														
1. Selec	t t	the OS	AR mo	del:	2. C	lick	Run:	3. 9	Select	Pred	lict C	hemi	cals i	n don	nain:	4. Cli	ck OK	•
		201		,	0			5							,			/
			<															×
101																		

Data Gap Filling Perform prediction for chemicals in domain

QSAR TOOLBOX	ling	01010 01 0 10100 P Data Gap Filling	Report								×e	
Gap Filling Workflow Find analysis Read across (QISAR Standardized Automated											The Ol for Gro into Ci Develo	ECD QSAR Toolbox puping Chemicals ategories oped by LMC, Bulgari
Documents	Filter endpoint tree	1 [target]	2	3	4	5	6	7	8	9	10	11
pcument 1 1 Cr. Hwit: 3H-2] CAS: 98011 Image: Cr. Market and Cr. 24946 (454-291). Studeategorized: Acute aquatic toxicity MC Image: Cr. 24946 (454-291). Studeategorized: Acute aquatic toxicity MC	Structure		Hyd Cons	HyC CH3	16	HyC	*******	**~~~~**	m _a c J	rs Of	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
C: 28)Md: 63;Pi 29] Subcategorized: Aquatic toxicity clar	Structure info Parameters Prysical Chemical Properties Control Chemical Properties Control Co	•										
C 2	Ciliophora Ciliophora Ciliatea Tetrahymena pyriformis IGC50 79/10	M: 145 mg/L 8 T: 268 (60.2+1.2E+03) mg/L Q: 268 (60.2+1.2E+03) mg/L 1	M: 31.7 mg/L	Q: 95.3 (22÷412). M: 112 mg/L	M: 3.9 mg/L Q: 7.94 (1.68+37	M: 14 mg/L	M: 7.96 mg/L	M: 8.2 mg/L Q: 13.1 (2.88+59	M: 937 mg/L 	Q: 134 (31+578) M: 191 mg/L	. Q: 8.35 (1.75÷39	.M: 167 mg/L
	Mortality 60/8	0 M: 10.5 mg/L	M: 6.62 mg/L	M: 7.77 mg/L				M: 3.19 mg/L		M: 20 mg/L	M: 5.01 mg/L	
✓ Only endpoint relevant	Physiology 19/2	2			M: 1.66 mg/L	M: 14.6 mg/L	M: 5.64 mg/L					
At this position:	Terrestrial Toxicity											
Select a cell with a rigid (bold) path Automated workflows 0	Human Health Hazards □ P											
Standardizēd workflows 0 E	- T Y Y Y Y											

Outlook

- Background
- Keywords
- Objectives
- The exercise

Workflow of the exercise

- Input
- Profiling
- Data
- Category definition
- Data gap filling
 - QSAR model
 - Export QSAR prediction
- The QSAR predictions for the chemicals in the matrix can be exported into a file
- In the Endpoint tree right click on Tetrahymena pyriformis (for the endpoint IGC50 48h for Tetrahymena pyriformis) and select Export Data matrix from the context menu (see next three screen shots).

Select **Export Data matrix** (see next screen shot).

1. The nodes from the tree associated with QSAR predictions which will be exported are selected with check marks; 2. Click **Export**; 3. Browse to save the file on your PC; 4. Give a name of the file; 5. Click **Save**; 6. Click **OK** when the file is exported.

OK

The resulting file in *.csv format can be opened via Microsoft Excel and further analysed.

🔟 🖯 🏷 🖉 ÷		IGC50.csv - Excel			? 🗈 – 🗆 🗙						
FILE HOME INSERT PAGE LAYOUT FORMULAS DATA	REVIEW VIEW OASIS				Sign ir						
$\begin{array}{c c} & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ &$	Image: Wrap Text General Image: Element Image: State of the sta	Image: Styles Normal Bad God Ifitional Format as atting v Calculation Check Cell Exp	od Neutral	ert Delete Format Cells Clear → Fill → So	T #						
B1 \cdot : $\times \checkmark f_x$ CAS Number											
A B C D E F G	H I J K L N	N O P Q R	S T U V	W X Y	Z AA AB 🔺						
1 # CAS Numi SMILES EndpointF Endpoint Test orgar Effect	SAR/(Q)S/Domain st Reference Kingdom Phylum Class	Subclass Order Suborder Family Genus	Duration. Duration. Duration. Duration	on. Duration. Duration. Duration. I	Juration./Value.Me Value.Qu						
2 1 98-01-1 O=Cc1cccc Ecotoxico IGC50 Tetrahym Growth	IGC 50 48h In domain QSAR Too Protozoa Ciliophora Ciliat	a Rhabdoph Hymenost Tetrahym Tetrahym Tetrahym	48 h Time		268.4739						
3 1 98-01-1 O=Cc1cccc Ecotoxico IGC50 Tetrahym Growth	QSAR Too Protozoa Ciliophora Ciliat	a Rhabdoph Hymenost Tetrahym Tetrahym Tetrahym	48 h Time		268.4739						
4 1 98-01-1 O=Cc1cccc Ecotoxicol IGC50 Tetrahym Growth	Protozoa Ciliophora Ciliat	a	48 h Time		145.4256						
5 2 122-03-2 CC(C)c1cc Ecotoxico IGC50 Tetrahym Growth	Protozoa Ciliophora Ciliat	a	48 h Time		31.68359						
6 3 97-96-1 CCC(CC)C Ecotoxico IGC50 Tetrahym Growth	IGC 50 48h In domain QSAR Too Protozoa Ciliophore Ciliat	a Rhabdoph Hymenost Tetrahym Tetrahym Tetrahym	48 h Time		95.30673						
7 3 97-96-1 CCC(CC)C Ecotoxico IGC50 Tetrahym Growth	Protozoa Ciliophora Ciliat	a	48 h Time		112.3761						
8 4 112-44-7 CCCCCCC Ecotoxico IGC50 Tetrahym Growth	IGC 50 48h In domain QSAR Too Protozoa Ciliophore Ciliat	a Rhabdoph Hymenost Tetrahym Tetrahym Tetrahym	48 h Time		7.938776						
9 4 112-44-7 CCCCCCC Ecotoxicol IGC50 Tetrahym Growth	Protozoa Ciliophora Ciliat	a	48 h Time		3.900997						
10 5 123-73-9 CC=CC=O Ecotoxico IGC50 Tetrahym Growth	Protozoa Ciliophora Ciliat	a	48 h Time		13.98432						
11 6 2548-87-0 CCCCCC=C Ecotoxico IGC50 Tetrahym Growth	Protozoa Ciliophora Ciliat	a	48 h Time		7.962124						
12 7 112-31-2 CCCCCCC Ecotoxico IGC50 Tetrahym Growth	IGC 50 48h In domain QSAR Too Protozoa Ciliophore Ciliat	a Rhabdoph Hymenost Tetrahym Tetrahym Tetrahym	48 h Time		13.09543						
13 7 112-31-2 CCCCCCC Ecotoxico IGC50 Tetrahym Growth	Protozoa Ciliophora Ciliat	a	48 h Time		8.200578						
14 8 68282-53- Cc1[nH]cn Ecotoxico IGC50 Tetrahym Growth	Protozoa Ciliophora Ciliat	a	48 h Time		937.2531						
15 9 613-45-6 COc1ccc(CEcotoxico IGC50 Tetrahym Growth	IGC 50 48h In domain QSAR Too Protozoa Ciliophore Ciliat	a Rhabdoph Hymenost Tetrahym Tetrahym Tetrahym	48 h Time		133.7304						
16 9 613-45-6 COc1ccc(C Ecotoxico IGC50 Tetrahym Growth	Protozoa Ciliophora Ciliat	a	48 h Time		190.788						
17 10 80-54-6 CC(Cc1ccc Ecotoxico IGC50 Tetrahym Growth	IGC 50 48h In domain QSAR Too Protozoa Ciliophore Ciliat	a Rhabdoph Hymenost Tetrahym Tetrahym Tetrahym	48 h Time		8.349623						
18 11 459-57-4 Fc1ccc(C=(Ecotoxico IGC50 Tetrahym Growth	Protozoa Ciliophora Ciliat	a	48 h Time		167.4194						
19 12 557-48-2 CCC=CCCC Ecotoxico IGC50 Tetrahym Growth	Protozoa Ciliophora Ciliat	a	48 h Time		6.317012						
20 13 922-63-4 CCC(=C)C=Ecotoxico IGC50 Tetrahym Growth	Protozoa Ciliophora Ciliat	a	48 h Time		10.34822						
21 14 99-61-6 [O-][N+](=Ecotoxico IGC50 Tetrahym Growth	Protozoa Ciliophora Ciliat	a	48 h Time		109.4765						
22 15 142-83-6 CC=CC=CC Ecotoxico IGC50 Tetrahym Growth	Protozoa Ciliophora Ciliat	a	48 h Time		17.09345						
23 16 2579-22-8 O=CC#Cc1 Ecotoxico IGC50 Tetrahym Growth	Protozoa Ciliophora Ciliat	a	48 h Time		1.242805 👻						
< → IGC50 (+)		: •			•						

Outlook

- Background
- Keywords
- Objectives
- The exercise

Workflow of the exercise

- Input
- Profiling
- Data
- Category definition
- Data gap filling
- Report

Report

Report

1. Navigate through the Wizard to customize the report; 2. Select **Create report**; 3. Choose **QMRF report** and then **Open (4)** to create a PDF format of the report or click **Save as** if you want to save the file; 5. Choose **Training set** in order to create a MS Excel file (training set of the QSAR along with their data) or 6. Click **Save as**;

QSAR TOOLEOX

Report

	1/4 IG	C50 new						2/4			
IGC50 new		3.1. Species: Tetrahymena pytiformis 3.2. Endpoint:									
A (Q)SAR model		3.3. Comment Not availab	on the endpo size	oint:							
		3.4. Endpoint Not availab	units: sie								
1. (Q)SAR identifier		3.5. Depender Not availab	rt variable: sie								
1.1. (Q)SAR identifier (title): IGC50 new (v.1.0)		3.6. Experimental protocol: Not available			Training set						
1.2. Other related models: Not available		3.7. Endpoint Not availab	data quality a sie	and variability:							
1.3. Software coding the model: QSAR Toolbox 4.4.1		4. Defining th	ie algorithm	n (OECD Principle	2)						
2. General information	A	4.1. Type of n B	xodel: C D	E	F	G H	I	J K	L	M	N
2.1. Date of QMRF: 10-April-2020	2 Substance ident	tity	Trai	ining set #1		maining set #2		maining set #3		Traini	ng set #4
2.2. QMRF author(s) and contact details: Not available	Structure		H ₃ C	CH3		H3C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		H3C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		нус	0
2.3. QMRF update(s): Not available	3	~ ~							ů Ota		
2.4. Date of the QMRF update(s):	4 CAS number 5 Chemical name	97-96-1 Ethylbutanal				112-44-7 C11-H22-O	112-31-2 Decanal		613-45-6 2.4-DIMETHOXYBENZALDEHYD		
2.5. Model developer(s) and contact details:	6 Other identifier	6 Other identifier									
Not available	7 SMILES 8	7 SMILES CCC(CC)C=O 8		CCCCCCCCCC=O		CCCCCCCCC=O		COc1ccc(C=O)c(OC)c1			
2.6. Date of model development and/or publication:	9 Parameters	unit									
Not evaluable	11 Profilers										
 Reference(s) to main sciencific papers and/or software package: Not available 	12 13 Training set data	a and user gathered									
2.8. Availability of information about the model: Not available	14 Training set dat	a		species, duration, test type, type of method,		species, duration, test type, type of method,		species, duration, tes type, type of method	t	sı tı	pecies, duration, t vpe, type of meth
2.9. Availability of another QMRF for exactly the same model: Not available	sublevel	endpoint	value unit	assay, strain, test guideline, year,	value v	unit assay, strain, test guideline, year,	value •	unit assay, strain, test guideline, year,	value • •	unit	assay, strain, tes guideline, year,
3. Defining the endpoint (OECD Principle 1)	Aquatic Toxicity	IGC50	112 mg/L	Tetrahymena pyriformis IGC50	3.9	Tetrahymena mg/L pyriformis IGC50	8.2 r	mg/L pyriformis IGC50	191	mg/L	Tetrahymena pyriformis IGC50
	17										

QSAR Toolbox 4.4.1 Database version: 4.4.1 QSAR TOOLBOX

QSAR Toolbox 4.4.1 Database version: 4.4.1

TPRF v4.4.1

QSAR TOOLBOX

TPRF v4.4.1

species, duration, test type, type of method,

assay, strain, test guideline, year,

Congratulations!

- You have used the Toolbox to build a user-defined QSAR model.
- You now know another useful tool in the Toolbox.
- Continue to practice with this and other tools. Soon you will be comfortable dealing with many situations where the Toolbox is useful.