QSAR TOOLBOX

The OECD QSAR Toolbox for Grouping Chemicals into Categories

OECD QSAR Toolbox v.4.4.1

Step-by-step example of how to evaluate an ad-hoc category of aliphatic amines and to predict an ecotoxicological endpoint

- Background
- Keywords
- Category evaluation overview

Background

- This is a step-by-step presentation designed to take you through the workflow of the Toolbox for evaluating an ad-hoc category.
- You will learn several new functionalities which will be repeated to assure a consistent category is defined.
- It is assumed that you now have some experience in using the Toolbox so there will be multiple key strokes between screen shots.

- Background
- Keywords
- Category evaluation overview

Keywords

TARGET CHEMICAL - chemical of interest

MODULE – a Toolbox module is a section dedicated to specific actions and options (e.g. Profiling)

WORKFLOW – the use, in combination, of the different modules (e.g. prediction workflow: from input to report)

PROFILER - algorithm (rule set) for the identification of specific features of the chemicals. Several types of profilers are available, such as structural (e.g. Organic functional groups), mechanistic (e.g. Protein binding by OECD) and endpoint-specific (e.g. in vitro in vitro mutagenicity (Ames test) alerts by ISS) profilers.

ALERT - the profilers consist of sets of rules or alerts. Each of the rules consists of a set of queries. The queries could be related to the chemical structure, physicochemical properties, experimental data, comparison with the target or list with substances and external queries from other predefined profilers (reference queries).

CATEGORY – "group" of substances sharing same characteristics (e.g. the same functional groups or mode of action). In a typical Toolbox workflow, it consists of the target chemical and its analogues gathered according to the selected profilers

ENDPOINT TREE – Endpoints are structured in a branched scheme, from a broader level (Phys-Chem properties, Environmental Fate and transport, Ecotoxicology, Human health hazard) to a more detailed one (e.g. EC3 in LLNA test under Human health hazard-Skin sensitization)

DATA MATRIX – Table reporting the chemical(s) and data (experimental results, profilers outcomes, predictions). Each chemical is in a different column and each data in a different row

- Background
- Keywords
- Category evaluation overview

Category Evaluation Two phases of evaluation process

<u>Phase I.</u> Evaluation of Category & Data Gap Filling:

- Investigating the structural consistency of an ad hoc category (e.g., a category submitted by an industry consortium to a regulatory assessment program).
- Implementation of ad hoc category building and data gap filling.

Phase II. Extension of Category & Data Gap Filling:

- Search for other analogues which are consistent with the submitted category.
- Data gap filling using new data matrix.

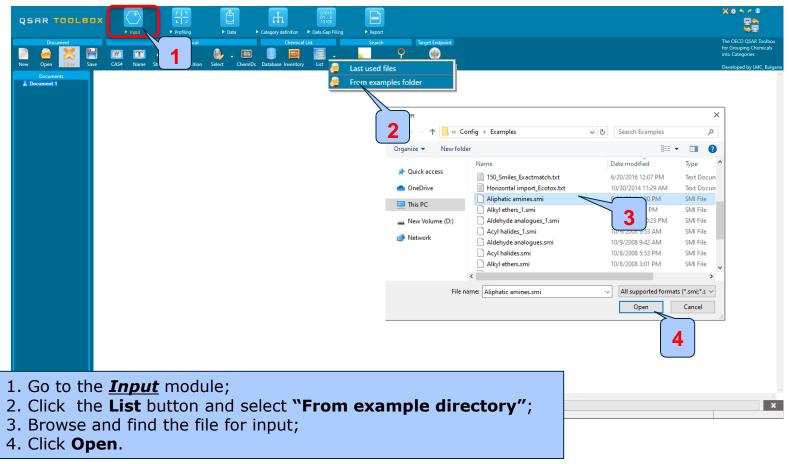
- Background
- Keywords
- Category evaluation overview
 - <u>Phase I.</u> Evaluation of Category & Data Gap Filling
 - <u>Step 1:</u> Investigating the structural consistency of an ad hoc category.
 - Case study

Phase I: Evaluation of Category & Data Gap Filling Step 1. Investigating the structural consistency of an ad hoc category Case Study

- The submission consists of a category with 19 aliphatic amines.
- The predicted ecotoxicological endpoint EC50, 48h, D.magna of 2-Butanamine (CAS 13952-84-6) will be reviewed.

- Background
- Keywords
- Category evaluation overview
 - <u>Phase I.</u> Evaluation of Category & Data Gap Filling
 - <u>Step 1:</u> Investigating the structural consistency of an ad hoc category.
 - Case study
 - Workflow

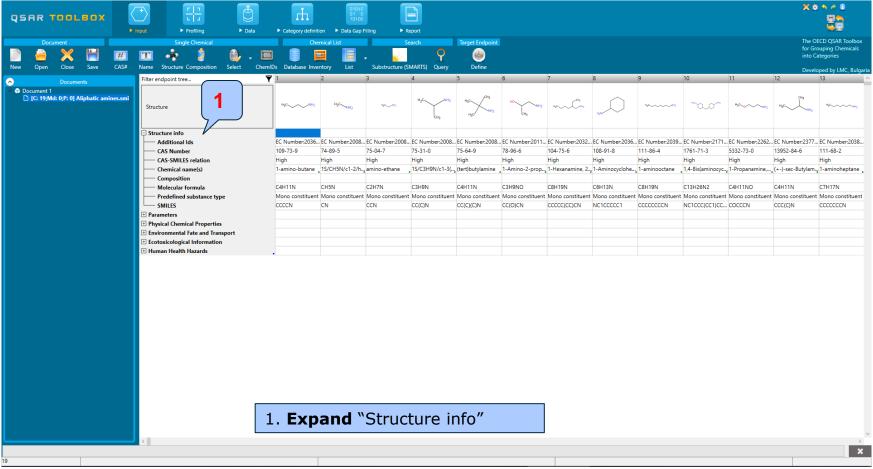
Phase I: Evaluation of Category & Data Gap Filling Step 1. Investigating the structural consistency of an ad hoc category *Workflow*


The following input workflow is used:

- Input the file for submission as an user list (In this case input file Aliphatic amines.smi* from example directory).
- Evaluate the category applying the following profiling schemes:
 - US-EPA New Chemical Categories
 - Aquatic toxicity classification by ECOSAR
 - Aquatic toxicity MOA of action
 - Organic functional groups (nested)

Aliphatic amines.smi* - file is available with TB installation, located at C:\Program Files (x86)\Common Files\QSAR Toolbox 4.4\Config\Examples

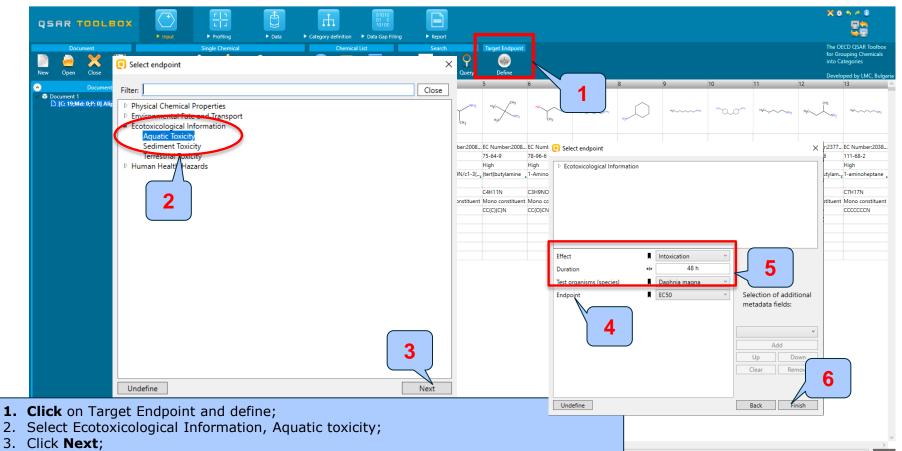
- Background
- Keywords
- Category evaluation overview
 - <u>Phase I.</u> Evaluation of Category & Data Gap Filling
 - <u>Step 1:</u> Investigating the structural consistency of an ad hoc category.
 - Case study
 - Workflow
 - Input


Step 1. Investigating the structural consistency of an ad hoc category *Workflow/Input*

Phase I: Evaluation of Category & Data Gap Filling Step 1. Investigating the structural consistency of an ad hoc category *Workflow/Input*

- You have now inserted your chemical list into the system.
- Click on the box next to "Structure info"; this displays the chemical identification information (see next screen shot).

Step 1. Investigating the structural consistency of an ad hoc category *Workflow/<u>Input</u>*

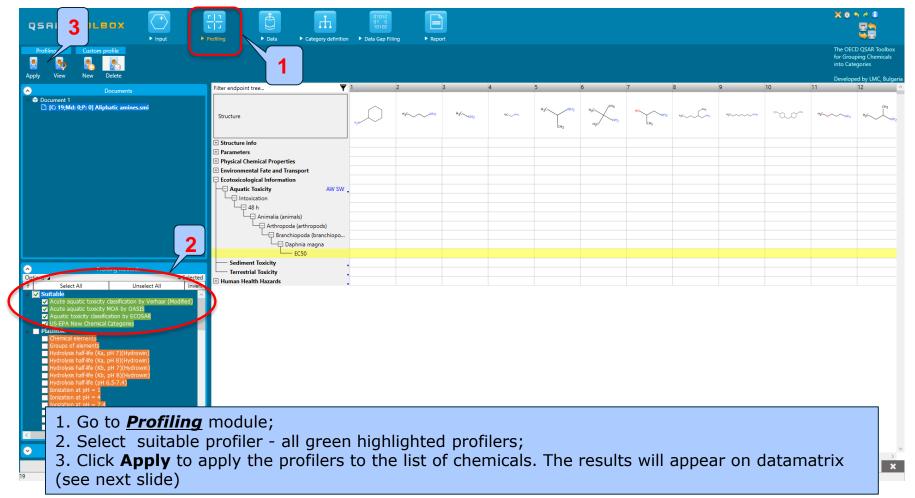

- Background
- Keywords
- Category evaluation overview
 - <u>Phase I.</u> Evaluation of Category & Data Gap Filling
 - <u>Step 1:</u> Investigating the structural consistency of an ad hoc category.
 - Case study
 - Workflow
 - Input
 - Define target endpoint

Input Define target endpoint

- Defining of the endpoint allows entering the endpoint of interest e.g. EC3, LC50, gene mutation etc., along with specific metadata information. Based on the metadata, relevancy of the profiles and databases is provided expressed in different highlighting:
 - In green are highlighted the most suitable profilers related to the endpoint and databases including data for the defined target endpoint, while
 - In orange are colored profilers which are plausible with respect to the defined target endpoint.

Define target endpoint Overview

- 4. Select endpoint **EC50** from the drop down menu; and consecutively select the following metadata
- 5. Test organism(spices) Daphnia magna; Duration 48 h; Effect Intoxication;
- 6. Click Finish.

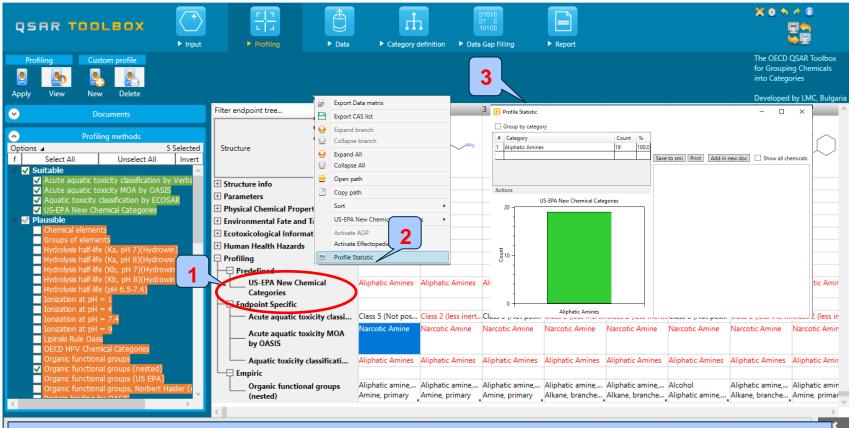

Define target endpoint Overview

Open Close Save CAS#	Name Structure Composition Select Chemil	Ds Database Inve	ntory List	- Substructure (SI	MARTS) Query	o Define							into Ca	ouping Chemic ategories
Documents	Filter endpoint tree					5	6	7	8	9	10	11		ped by LMC, 13
Document 1 [] [C: 19;Md: 0;P: 0] Aliphatic amines.smi	Structure	Hyc	H3C NH2	alt nut	H ₃ C AH ₂	HgC Hg	HO CH3	H2CCH3	H2N	HgC~~~~~HHg	"``QQ""	Hyc	HgC OHg NH2	196~~~~
	Structure info Additional lds CAS Number	EC Number:2036 109-73-9			EC Number:2008 75-31-0	EC Number:2008 75-64-9		. EC Number:2032. 104-75-6	. EC Number:2036 108-91-8	. EC Number:2039. 111-86-4	EC Number:2171 1761-71-3			EC Number 111-68-2
	CAS-SMILES relation Chemical name(s) Composition	High		High	High	High (tert)butylamine	High	High	High	High		High	High	High
	Molecular formula Predefined substance type SMILES	C4H11N Mono constituent CCCCN	Mono constituent	Mono constituent	C3H9N Mono constituent CC(C)N	C4H11N Mono constituent CC(C)(C)N	Mono constituent	C8H19N Mono constituent CCCCC(CC)CN	C6H13N Mono constituent NC1CCCCC1	C8H19N Mono constituent	C13H26N2 Mono constituent NC1CCC(CC1)CC	Mono constituent	Mono constituent	C7H17N Mono cons
	Parameters Physical Chemical Properties Environmental Fate and Transport					es(e)(e)(e)								
	Ecotoxicologial Information Aquatic Toxicity AW SW Aviatic Toxicity AW SW Animalia (animals) Arthropoda (arthropods) Branchiopoda (oranchiopu. Dophnia magna													
	Sediment Toxicity Terrestrial Toxicity Human Health Hazards													

Phase I: Evaluation of Category & Data Gap Filling Step 1. Investigating the structural consistency of an ad hoc category *Workflow/Profiling*

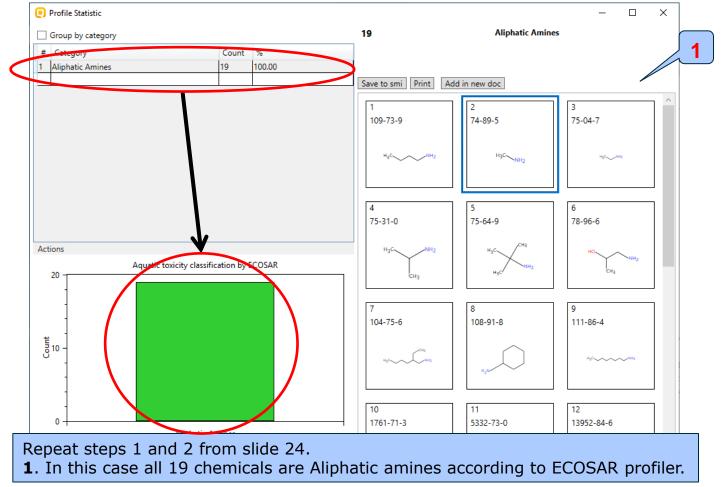
- The first step of the category evaluation according to Phase I is the consistency check of the category which starts with evaluation of the robustness with respect to structural functionalities. The following schemes could be used for this purpose:
 - US-EPA New Chemical Categories (hereafter cited as US-EPA)
 - Aquatic toxicity classification by ECOSAR (i.e. ECOSAR)
 - Aquatic toxicity MOA of action (i.e. MOA)
 - Organic functional groups (nested) (i.e. OFG(nested))
- Select "profiling methods" by clicking on the boxes before the names of the profilers and Click "Apply". Before selecting the profiling methods unselect all (see next screen shot).

Step 1. Investigating the structural consistency of an ad hoc category *Profiling*

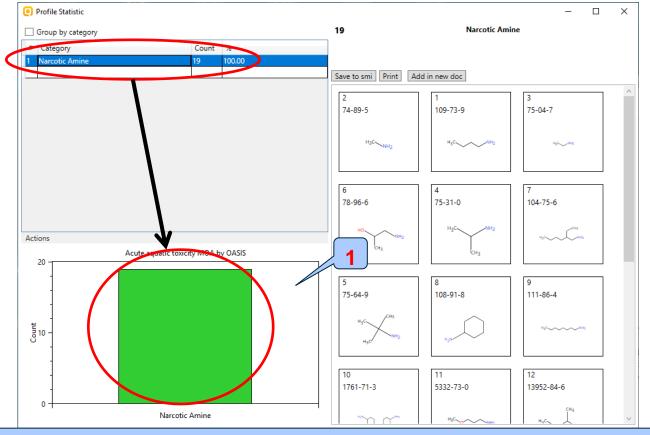

Step 1. Investigating the structural consistency of an ad hoc category **Profiling**

	Profiling	Tói0Ŏ n ► Data Gap Fil	ing > Rep									for Grou into Cate	
	Filter endpoint tree	1	2	3	4	5	6	7	8	9	10		ed by LMC, Bul 12
Documents Cc 19;Md: 0;P: 0] Aliphatic amines.smi	Structure		HyC	H ₃ C NH2	19.000	H ₂ C NH ₂ CH ₃	H3C CH3 H3C NH2	HO CH3	н ₂ сСн ₂	Hy5~~~~~NH2	"``QQQ""	H3C~~~~~0H2	H3C
	Structure info Parameters Physical Chemical Properties Environmental Fate and Transport Cotoxicological Information Aquatic Toxicity AW SW Intoxication Arimalia (animals) Artimopoda (arthropods) Branchiopoda (branchiopou	•											
Profiling methods tons ▲ Selected Select All Unselect All Invert Suitable Acute aquatic toxicty dassfication by Verhaar (Modified) Acute aquatic toxicty MOA by OASIS	EC50 EC50 Ec50 Terrestrial Toxicity Human Health Hazards Profiling Predefined U.S-EPA New Chemical Categories	Aliohatic Amines	Aliohatic Amines	Aliphatic Amines	Aliphatic Amines	Aliphatic Amines	Aliphatic Amines	Aliohatic Amines	Aliphatic Amines	Aliphatic Amines	Aliphatic Amines	Aliphatic Amines	Aliphatic Ar
Aquatic toxicity classification by ECOSAR US-EPA New Chemical Categories	Endpoint Specific												
Plausible	Acute aquatic toxicity classification by												
Chemical elements Groups of elements	Acute aquatic toxicity MOA by OASIS Aquatic toxicity classification by ECOS			Narcotic Amine Aliphatic Amines									
Hydrolyse half-life (Ka, pH 7)(Hydrown) Hydrolyse half-life (Ka, pH 8)(Hydrown) Hydrolyse half-life (Kb, pH 8)(Hydrown) Hydrolyse half-life (Kb, pH 8)(Hydrown) Hydrolyse half-life (Hb 6-5-7.4) Ionrazbon at pH = 1 Ionrazbon at pH = 4 Ionrazbon at pH = 7.4 Ionrazbon at pH = 9 Lipinski Rule Oass OECD HPV Chemical Categories													
Metabolism/Transformations	<												

Phase I: Evaluation of Category & Data Gap Filling Step 1. Investigating the structural consistency of an ad hoc category *Workflow/Profiling*

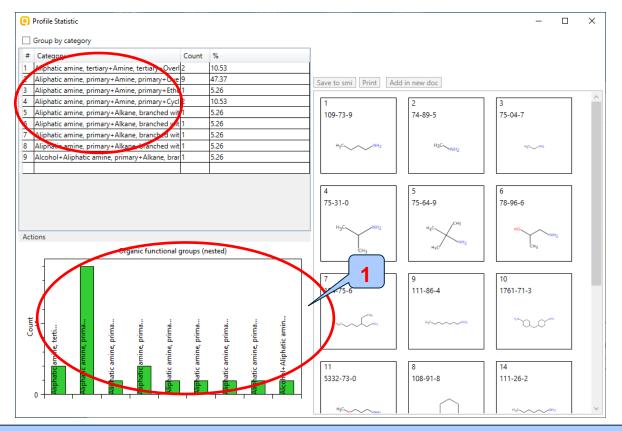

- The actual profiling will take several seconds depending on the number and type of selected profilers.
- The results of profiling automatically appeared as a dropdown box under the target chemical.
- The overall result for the list of chemicals can be seen by right clicking in the space near the profiler in the endpoint tree and select Profile statistics from the dropdown menu (see next screen shot).

Step 1. Investigating the structural consistency of an ad hoc category *Profiling*


1. Right click above US-EPA profiler; 2. Select **Profile Statistics**; 3. A window appears with profile statistics for the list of chemicals across "US-EPA" profiler. All the chemicals are "Aliphatic amine"

Step 1. Investigating the structural consistency of an ad hoc category *Profiling/<u>Statistics according to ECOSAR</u>*

Step 1. Investigating the structural consistency of an ad hoc category


Profiling/<u>Statistics according to Aquatic toxicity MOA by</u> <u>OASIS</u>

1. In this case all 19 chemicals are Narcotic amines according to MOA by OASIS profiling scheme

Step 1. Investigating the structural consistency of an ad hoc category

Profiling/Statistics according to OFG (nested)

1.In this case all the chemicals in the category are categorized as "Aliphatic amine," according to OFG (nested) scheme

Phase I: Evaluation of Category & Data Gap Filling Step 1. Investigating the structural consistency of an ad hoc category *Recap*

• Chemicals are defined as:

- Aliphatic amines (broader category than primary amines)
 US-EPA categories, ECOSAR classification
- The statistics of organic functional groups provide detailed alert description of all 19 structures. However, all 19 chemicals have aliphatic amines fragment.
- It could be concluded that the category is consistent with respect to structural functionalities (chemicals are empirically similar- they all are aliphatic amines).

- Background
- Keywords
- Category evaluation overview
 - <u>Phase I.</u> Evaluation of Category & Data Gap Filling
 - <u>Step 1:</u> Investigating the structural consistency of an ad hoc category.
 - <u>Step 2</u>: Investigating the applicability domain of an ad hoc category.

<u>Phase I:</u> Evaluation of Category & Data Gap Filling Step 2. Investigating the applicability domain of an ad hoc category

In step 2, the applicability domain of the category will be investigated. The domain consist of two layers:

- Boundaries of structural functionalities
 - Aliphatic amines
- Parametric boundaries
 - log Kow (from 0.64 to 7.71)
 - Molecular weight (from 31 to 269 Da)
 - Water solubility (from 0.48×10^{-1} to 1×10^{6} mg/l)

You are now ready to extract the 2D and/or 3D parameters in order to check the parametric boundaries (see next screen shot).

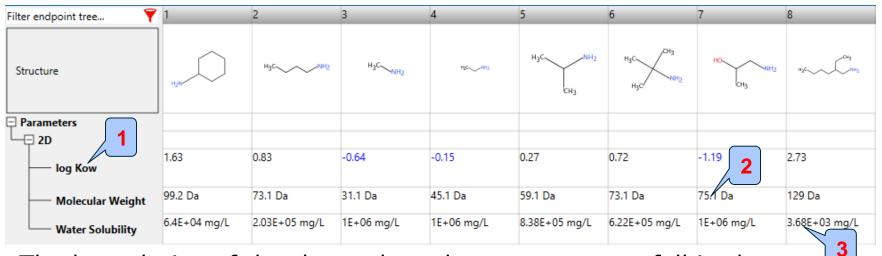
Step 2. Investigating the applicability domain of an ad hoc category *Extracting 2D and 3D parameters*

QSAR TOOLEOX	r 1 ▶ Profiling ▶ Data	Category definition	01010 01 0 10100 Data Gap Fillin	g ▶ Repo									Xer	
Profiling Custom profile													for Group into Cate	
	Filter endpoint tree	1	2	3	4	5	6	7	8	9	10	11	12	ed by LMC, Bulgari 13
Cocuments	Structure 1		HyC	H3C NH2	N6~M2	H3C CH3	HgC Hg	HONatg	45	Ny5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	H3C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	HgC	**~~~~
	(O) Basic pKe (Ottemaxon) — Acidic pKa (OASIS Consensus)	Not calculated Not calculated Not calculated												
	Acidic pKa (OASIS Regression) Amino acids pKa (OASIS Regression) BAF	Not calculated Not calculated Not calculated Not calculated Not calculated												
Profiling methods	BAF (mid trophic) BAF (upper trophic) BAF (upper trophic) BAF (upper trophic, biotransformation	Not calculated Not calculated Not calculated Not calculated												
Options ⊿ 4.5 Selected f Select All Unselect All Invert Image: Suitable Image: Suitable Image: Suitable Image: Suitable Image: Suitable Image: Acute aquatic toxicity (classification by Ver) Image: Suitable Image: Suitable	BCF BCF (lower trophic) BCF (mid trophic)	Not calculated Not calculated Not calculated Not calculated												
Aquatic toxicity classification by ECOSAR US-EPA New Chemical Categories Plausible Chemical elements Groups of elements	BCF (upper trophic, biotransformation Bio Half-Life Biodeg probability (Biowin 1)	Not calculated Not calculated Not calculated Not calculated												
Hydrolysis half-ffe (Ka, pH 7)(Hydrowin) Hydrolysis half-ffe (Ka, pH 8)(Hydrowin) Hydrolysis half-lfe (Kb, pH 7)(Hydrowin) Hydrolysis half-ffe (pH 6, 5-7.4) Hydrolysis half-ffe (pH 6, 5-7.4)	Biodeg probability (Biowin 6) Biodeg probability (Biowin 7)	Not calculated Not calculated Not calculated Not calculated												
Ionization at pH = 1 Ionization at pH = 4 Ionization at pH = 7.4		Not calculated Not calculated	Not calculated Not calculated Not calculated	Not calculated Not calculated Not calculated	Not calculated Not calculated Not calculated	Not calculated Not calculated Not calculated	Not calculated Not calculated Not calculated	Not calculated Not calculated Not calculated	Not calculated Not calculated Not calculated	Not calculated Not calculated Not calculated	Not calculated Not calculated Not calculated	Not calculated Not calculated Not calculated	Not calculated Not calculated Not calculated	Not calculated Not calculated Not calculated
1. Expand "Para open 2D by click		en o.	Not calculated Not calculated Not calculated Not calculated											

Step 2. Investigating the applicability domain of an ad hoc category *Extracting 2D and 3D parameters*

SAR TOOLBOX	► Profiling > Data >	Category definition	01010 01 0 10100 Data Gap Fillin	g Frepo											× • •	
Profiling Custom profile						į	<u>i</u>	Export Data m	atrix			1				D QSAR Tool ping Chemica
l EY E Zie ly View New Delete							B	Export CAS list	t							
ny view inew Delete			2				•	Expand branch								ed by LMC, E
Documents	Filter endpoint tree 💙	1	2	3	4	>	_						10	11	12	13
Document 1							9	Collapse brand	ch						01	
[C: 19;Md: 0;P: 0] Aliphatic amines.smi	Structure		H3C AH2	Н3С	70.000	H ₃ C	•	Expand All				-	"``	H3C	H-C-	HC~~
	Structure	Hall		- NH2			Θ	Collapse All					0.00	- • • • • • • • •	NH2	
						CH3	~	· · ·								
	Structure info							Target endpoir	nt		•					-
	Parameters						2	Open path								-
						\square	3	Convinath								
	(Q) Acidic pKa (Chemaxon)	Not calculated	Not calculated	Not calculated	Not calculated			Copy path				8 P	Not calculated	Not calculated	Not calculated	Not calc
	(Q) Basic pKa (Chemaxon)	Not calculated	Not calculated	Not calculated	Not calculated		6	Function			•	4 N	Not calculated	Not calculated	Not calculated	Not calo
	Acidic pKa (OASIS Consensus)	Not calculated	Not calculated	Not calculated	Not calculated			Sort				8 P	Not calculated	Not calculated	Not calculated	Not calc
	Acidic pKa (OASIS Electric)	Not calculated	Not calculated	Not calculated	Not calculated	TVOT CO. TOT							Not calculated	Not calculated	Not calculated	Not calo
	Acidic pKa (OASIS Regression)	Not calculated	Not calculated	Not calculated	Not calculated	Not calculat		Calculate/extra	act all parameter	s for all chemicals	5		Not calculated	Not calculated	Not calculated	Not cal
	Amino acids pKa (OASIS Regression)	Not calculated	Not calculated	Not calculated	Not calculated	Not calculat		Calculate/extra	act all 2D param	eters for all chemi	icals		Not calculated	Not calculated	Not calculated	Not calc
	BAF	Not calculated	Not calculated	Not calculated	Not calculated	Not calculat	_	Acidic nKa (O/	ASIS Regression)		•	-	Not calculated	Not calculated	Not calculated	Not calc
	BAF (lower trophic)	Not calculated	Not calculated	Not calculated	Not calculated	Not calculat			Kolo Negressiony				Not calculated	Not calculated	Not calculated	Not calc
	BAF (mid trophic)	Not calculated	Not calculated	Not calculated	Not calculated	Not calculat		Activate AOP					Not calculated	Not calculated	Not calculated	Not calc
	BAF (upper trophic)	Not calculated	Not calculated	Not calculated	Not calculated	Not calculat		Activate Effect	opedia Wizard				Not calculated	Not calculated	Not calculated	Not cale
Profiling methods	BAF (upper trophic, biotransfor ation Basic pKa (OASIS Regression)	Not calculated	Not calculated	Not calculated	Not calculated	Not calculate		Not calculated	Not calculated	Not calculated	Not calculate		Not calculated	Not calculated	Not calculated	Not cale Not cale
ns 🖌 4 Selected	BCF	Not calculated	Not calculated	Not calculated	Not calculated	Not calculate		Not calculated	Not calculated	Not calculated	Not calculate		Not calculated	Not calculated	Not calculated	Not cal
Select All Unselect All Invert	BCF (lower trophic)	Not calculated	Not calculated	Not calculated	Not calculated	Not calculate		Not calculated	Not calculated	Not calculated	Not calculate		Not calculated	Not calculated	Not calculated	Not cale
Acute aquatic toxicity classification by Ver	BCF (mid trophic)	Not calculated	Not calculated	Not calculated	Not calculated	Not calculate		Not calculated	Not calculated	Not calculated	Not calculate		Not calculated	Not calculated	Not calculated	Not calc
 Acute aquatic toxicity classification by Ver Acute aquatic toxicity MOA by OASIS 	BCF (upper trophic)	Not calculated	Not calculated	Not calculated	Not calculated	Not calculate		Not calculated	Not calculated	Not calculated	Not calculate		Not calculated	Not calculated	Not calculated	Not calo
Aquatic toxicity classification by ECOSAR	BCF (upper trophic, biotransformation	Not calculated	Not calculated	Not calculated	Not calculated	Not calculate		Not calculated	Not calculated	Not calculated	Not calculate		Not calculated	Not calculated	Not calculated	Not calo
US-EPA New Chemical Categories	Bio Half-Life	Not calculated	Not calculated	Not calculated	Not calculated	Not calculate	ed I	Not calculated	Not calculated	Not calculated	Not calculate	ed N	Not calculated	Not calculated	Not calculated	Not calc
Chemical elements	Biodeg probability (Biowin 1)	Not calculated	Not calculated	Not calculated	Not calculated	Not calculate	ed I	Not calculated	Not calculated	Not calculated	Not calculate	ed N	Not calculated	Not calculated	Not calculated	Not calc
Groups of elements	Biodeg probability (Biowin 2)	Not calculated	Not calculated	Not calculated	Not calculated	Not calculate	ed I	Not calculated	Not calculated	Not calculated	Not calculate	ed N	Not calculated	Not calculated	Not calculated	Not calc
Hydrolysis half-life (Ka, pH 7)(Hydrowin)	Biodeg probability (Biowin 5)	Not calculated	Not calculated	Not calculated	Not calculated	Not calculate	ed I	Not calculated	Not calculated	Not calculated	Not calculate	ed N	Not calculated	Not calculated	Not calculated	Not calc
Hydrolysis half-life (Ka, pH 8)(Hydrowin) Hydrolysis half-life (Kb, pH 7)(Hydrowin)	Biodeg probability (Biowin 6)	Not calculated	Not calculated	Not calculated	Not calculated	Not calculate	ed I	Not calculated	Not calculated	Not calculated	Not calculate	ed N	Not calculated	Not calculated	Not calculated	Not calc
Hydrolysis half-life (Kb, pH 8)(Hydrowin)	Biodeg probability (Biowin 7)	Not calculated	Not calculated	Not calculated	Not calculated	Not calculate	ed I	Not calculated	Not calculated	Not calculated	Not calculate	ed N	Not calculated	Not calculated	Not calculated	Not calc
Hydrolysis half-life (pH 6.5-7.4)	BioHC Half-Life	Not calculated	Not calculated	Not calculated	Not calculated	Not calculate		Not calculated	Not calculated	Not calculated	Not calculate		Not calculated	Not calculated	Not calculated	Not calc
Ionization at pH = 1 Ionization at pH = 4	Biotransformation Half-Life	Not calculated	Not calculated	Not calculated	Not calculated	Not calculate		Not calculated	Not calculated	Not calculated	Not calculate		Not calculated	Not calculated	Not calculated	Not calc
Ionization at pH = 7.4	Boiling point	Not calculated	Not calculated	Not calculated	Not calculated	Not calculate		Not calculated	Not calculated	Not calculated	Not calculate		Not calculated	Not calculated	Not calculated	Not calc
Ionization at pH = 9	Exp Boiling Point	Not calculated	Not calculated	Not calculated	Not calculated	Not calculate		Not calculated	Not calculated	Not calculated	Not calculate		Not calculated	Not calculated	Not calculated	Not calc
Lipinski Rule Oasis	Exp Henrys Law Constant	Not calculated	Not calculated	Not calculated	Not calculated	Not calculate	ed I	Not calculated	Not calculated	Not calculated	Not calculate	ed N	Not calculated	Not calculated	Not calculated	Not calc
															ated	Not calc

parameters for all chemicals or extract all 2D parameters for all.


×

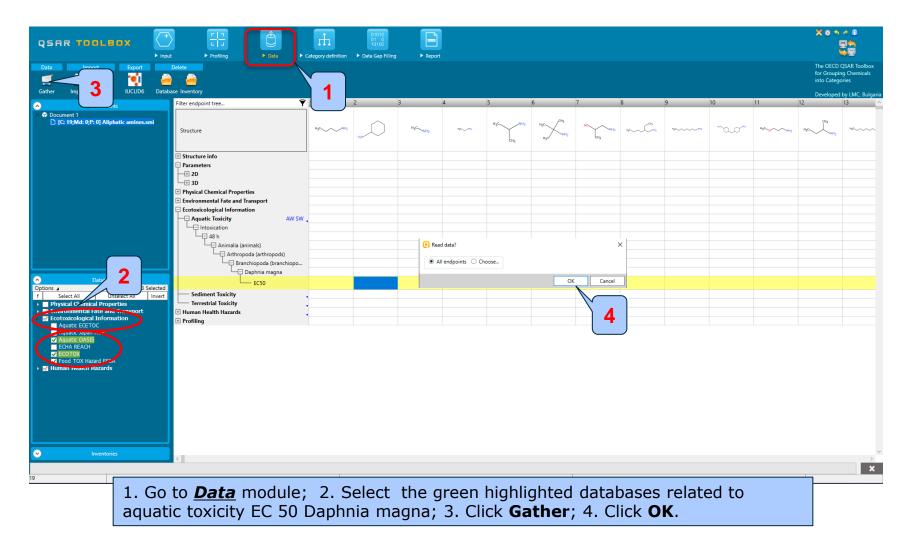
Step 2. Investigating the applicability domain of an ad hoc category *Extracting 2D and 3D parameters - results*

SAR TOOLEOX	Profiling → Data →	Category definition	01010 01 0 10100 Data Gap Fillir	ıg ▶ Repo									Xex	
rofiling Custom profile													for Group into Cate	
	Iter endpoint tree	1	2	3	4	5	6	7	8	0	10	11	Develope 12	ed by LMC 13
Document 1 [] [C: 19;Md: 0;P: 0] Aliphatic amines.smi	Structure		H3C Allif	H ₃ C _{NH2}	**~~**	H ₃ C NH ₂	H3C PH3 H3C H3C	HO NH2	Hyc. (04)	*******			HgC OH3	**~
		J												
	Structure info													
	Parameters													
		No value	No value	No value	No value	No value	No value	15.3	No value	No value	No value	No value	No value	No val
	(Q) Acidic pKa (Chemaxon)	10.5	10.2	10.1	10.2	10.4	10.7	9.6	10.2	10.2	10.8	10.1	10.4	10.2
	(Q) Basic pKa (Chemaxon)	No value	No value	No value	No value	No value	No value	11.9	No value	No value	No value	No value	No value	No va
	Acidic pKa (OASIS Consensus) Acidic pKa (OASIS Electric)	8.21	8,16	6.86	8.09	8.13	8.01	7.99	8,23		8.13	8.05	8.26	8.12
	Acidic pKa (OASIS Electric) Acidic pKa (OASIS Regression)	No value	No value	No value	No value	No value	No value	13	No value	No value	No value	No value	No value	No va
	Acidic pka (OASIS Regression) Amino acids pKa (OASIS Regression)	No value	No value	No value	No value	No value	No value	No value	No value	No value	No value	No value	No value	No va
	BAF	0.59 log(L/kg)	0.25 log(L/kg)	-0.04 log(L/kg)	-0.02 log(L/kg)	0.02 log(L/kg)	0.05 log(L/kg)	-0.05 log(L/kg)	1.75 log(L/kg)	1.82 log(L/kg)	2.24 log(L/kg)	-0.04 log(L/kg)	0.15 log(L/kg)	1.53 lo
	BAF (lower trophic)	0.436 log(L/kg)	0.168 log(L/kg)	-0.02 log(L/kg)	-0.008 log(L/kg)	0.018 log(L/kg)	0.035 log(L/kg)	-0.025 log(L/kg)	1.57 log(L/kg)		2.03 log(L/kg)	-0.018 log(L/kg)	0.097 log(L/kg)	1.34 k
	BAF (mid trophic)	0.472 log(L/kg)	0.186 log(L/kg)	-0.023 log(L/kg)	-0.01 log(L/kg)	0.019 log(L/kg)	0.038 log(L/kg)	-0.028 log(L/kg)	1.62 log(L/kg)		2.08 log(L/kg)	-0.021 log(L/kg)	0.108 log(L/kg)	1.39 10
	BAF (upper trophic)	0.594 log(L/kg)	0.25 log(L/kg)	-0.039 log(L/kg)	-0.02 log(L/kg)	0.023 log(L/kg)	0.052 log(L/kg)	-0.046 log(L/kg)	1.75 log(L/kg)	1.82 log(L/kg)	2.24 log(L/kg)	-0.035 log(L/kg)	0.147 log(L/kg)	1.53 lo
	BAF (upper trophic, biotransformation	0.629 log(L/kg)	0.28 log(L/kg)	-0.035 log(L/kg)	-0.012 log(L/kg)		0.066 log(L/kg)	-0.043 log(L/kg)	1.89 log(L/kg)		2.39 log(L/kg)	-0.03 log(L/kg)	0.173 log(L/kg)	1.63 lo
Profiling methods	Basic pKa (OASIS Regression)	10.3	10	9.74	10.1	10.4	10.8	9.04	9.96	10	10.1	8.99	10.4	10
A 4 Selected	BCF	0.65 log(L/kg)	0.5 log(L/kg)	0.5 log(L/kg)	0.5 log(L/kg)	0.5 log(L/kg)	0.5 log(L/kg)	0.5 log(L/kg)	1.53 log(L/kg)	1.58 log(L/kg)	1.82 log(L/kg)	0.5 log(L/kg)	0.5 log(L/kg)	1.36 lo
Select All Unselect All Invert	BCF (lower trophic)	0.436 log(L/kg)	0.168 log(L/kg)	-0.02 log(L/kg)	-0.008 log(L/kg)	0.018 log(L/kg)	0.035 log(L/kg)	-0.025 log(L/kg)	1.57 log(L/kg)	1.64 log(L/kg)	2.03 log(L/kg)	-0.018 log(L/kg)	0.097 log(L/kg)	1.34 lo
uitable	BCF (mid trophic)	0.472 log(L/kg)	0.186 log(L/kg)	-0.023 log(L/kg)	-0.01 log(L/kg)	0.019 log(L/kg)	0.038 log(L/kg)	-0.028 log(L/kg)	1.62 log(L/kg)		2.08 log(L/kg)	-0.021 log(L/kg)	0.108 log(L/kg)	1.39 lo
Acute aquatic toxicity classification by Ver Acute aquatic toxicity MOA by OASIS	BCF (upper trophic)	0.594 log(L/kg)	0.25 log(L/kg)	-0.039 log(L/kg)	-0.02 log(L/kg)	0.023 log(L/kg)	0.052 log(L/kg)	-0.046 log(L/kg)	1.75 log(L/kg)	1.82 log(L/kg)	2.24 log(L/kg)	-0.035 log(L/kg)	0.147 log(L/kg)	1.53 lo
Aquatic toxicity classification by ECOSAR	BCF (upper trophic, biotransformation	0.623 log(L/kg)	0.277 log(L/kg)	-0.035 log(L/kg)	-0.012 log(L/kg)	0.036 log(L/kg)	0.065 log(L/kg)	-0.043 log(L/kg)	1.85 log(L/kg)		2.29 log(L/kg)	-0.03 log(L/kg)	0.17 log(L/kg)	1.61 lc
US-EPA New Chemical Categories	Bio Half-Life	0.369 d	0.215 d	0.0724 d	0.0963 d	0.125 d	0.175 d	0.025 d	0.723 d	0.755 d	3.85 d	0.064 d	0.171 d	0.614
lausible Chemical elements	Biodeg probability (Biowin 1)	0.854	0.975	0.887	0.88	0.873	0.683	1.02	0.948	0.948	0.955	0.512	0.867	0.955
Groups of elements	Biodeg probability (Biowin 2)	0.938	0.993	0.975	0.97	0.964	0.795	0.985	0.984	0.984	0.904	0.36	0.956	0.987
Hydrolysis half-life (Ka, pH 7)(Hydrowin)	Biodeg probability (Biowin 5)	0.46	0.539	0.529	0.532	0.46	0.422	0.556	0.477	0.553	0.359	0.503	0.463	0.549
Hydrolysis half-life (Ka, pH 8)(Hydrowin) Hydrolysis half-life (Kb, pH 7)(Hydrowin)	Biodeg probability (Biowin 6)	0.528	0.705	0.71	0.708	0.586	0.319	0.687	0.576	0.698	0.169	0.597	0.584	0.7
Hydrolysis half-life (Kb, pH 8)(Hydrowin)	Biodeg probability (Biowin 7)	0.453	0.694	0.934	0.96	0.688	0.44	0.927	0.501	0.798	0.414	0.755	0.714	0.772
Hydrolysis half-life (pH 6.5-7.4)	BioHC Half-Life	No value	No value	No value	No value	No value	No value	No value	No value	No value	No value	No value	No value	No val
Ionization at pH = 1	Biotransformation Half-Life	0.369 d	0.215 d	0.0724 d	0.0962 d	0.125 d	0.175 d	0.025 d	0.723 d	0.755 d	3.85 d	0.064 d	0.171 d	0.614
Ionization at pH = 4 Ionization at pH = 7.4	Boiling point	145 °C	87.7 °C	10.2 *C	36.9 *C	47.3 °C	62.8 °C	131 °C	166 °C	178 °C	316 °C	113 °C	72.8 °C	157 °C
Ionization at pH = 9	Exp Boiling Point	134 °C	78 °C	-6.3 °C	16.6 °C	31.8 °C	45 °C	160 °C	169 °C	180 °C	320 °C	118 °C	62.5 °C	156 °C
Lipinski Rule Oasis	Exp Henrys Law Constant	4.16E-06 atm-m.	. 1.74E-05 atm-m		1.23E-05 atm-m.	4.51E-05 atm-m	. 3.58E-05 atm-m.	. No value		0.000824 atm-m	No value	No value	0.000153 atm-m.	_
OECD HPV Chemical Categories	Exp Log P	1.49	0.97	-0.57	-0.13	0.26	0.4	-0.96	2.82	2.9	No value	No value	0.74	2.57
> _	Exp Melting Point	-17.7 °C	-50 °C	-93.4 °C	-81.2 °C	-95.1 °C	-72.7 °C	25 °C	-76 °C	0 °C	15 °C	No value	No value	-18 °C
	Exp NO3 rate constant	No value	No value	No value	No value	No value	No value	No value	No value	No value	No value	No value	No value	No val

All calculated 2D parameters appears on data matrix.

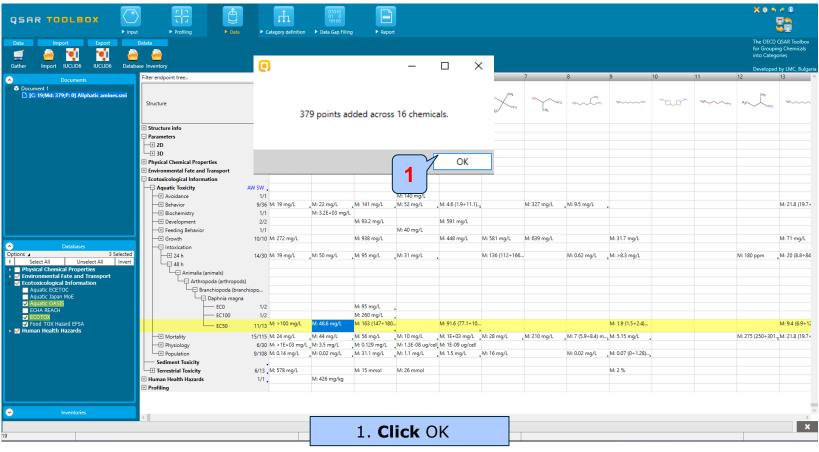
Step 2. Investigating the applicability domain of an ad hoc category *Extracting 2D and 3D parameters - results*

The boundaries of the three phys-chem parameters fall in the following ranges:


- 1. log Kow (from 0.64 to 7.71)
- 2. Molecular weight (from 31 to 269 Da)
- 3. Water solubility (from 0.48×10^{-1} to 1×10^{6} mg/l)

- Background
- Keywords
- Category evaluation overview
 - <u>Phase I.</u> Evaluation of Category & Data Gap Filling
 - <u>Step 1:</u> Investigating the structural consistency of an ad hoc category.
 - <u>Step 2</u>: Investigating the applicability domain of an ad hoc category.
 - <u>Step 3:</u> Reading data for the analogues

Phase I: Evaluation of Category & Data Gap Filling Step 3. Reading data


- Next, the Data matrix is constructed by extracting available experimental results for all 19 members of the category.
- Based on preceding category evaluation, no outliers have been identified violating the structural and mechanistic consistency of the category.

Phase I: Evaluation of Category & Data Gap Filling Step 3. Reading data

Phase I: Evaluation of Category & Data Gap Filling Step 3. Reading data

The system automatically gives indication for the number of gather experimental data points

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Outlook

- Background
- Keywords
- Category evaluation overview
 - <u>Phase I.</u> Evaluation of Category & Data Gap Filling
 - <u>Step 1:</u> Investigating the structural consistency of an ad hoc category.
 - <u>Step 2:</u> Investigating the applicability domain of an ad hoc category.
 - <u>Step 3:</u> Reading data for the analogues
 - <u>Step 4:</u> Data gap filling for 2-Butanamine

Phase I: Evaluation of Category & Data Gap Filling Step 4. Data gap filling for 2-Butanamine

- As mentioned before (slide 28) the category is structurally and mechanistically similar
- Hence the data gap could be filled in for analogues from the category. In this case we will fill the gap for 2-Butanamine (this will be our target chemical)
- Before proceeding with filling data gap you should navigate to the column corresponding to the target chemical (see next slide).

Phase I: Evaluation of Category & Data Gap Filling

Step 4. Data Gap Filling for 2-Butanamine *Navigate to the target chemical*

QSAR TOOLBOX	Imput > Profiling > Data > Calibrature definition > Data Gale Filing > Report	
Gap Filling	Workflow 1	The OECD QSAR Toolt for Grouping Chemica into Categories
nd analysis Read cross (Q)SAR Standa		Developed by LMC, Bu
Document 1 D [C: 19;Md: 3)	structure	
	Effect	
	Parameters Kingdom ZD A Native scale/unit	
	□ 3D	
	Physical Chemicals Properties	
	Environmental Fate and Transport 2/14 Current 2/14 Current 2/14	
	Experiences 2 data	
	Aquatic Toxicity AW SW . D Test organisms (species)	
	Avoidance 1/1	,
	Image: Heat Select scale/unit to use M: 327 mg/L M: 95 mg/L	M: 21.8 (19.7
	Biochemistry 1/1 M	
	+ Development 2/2 O g/m [0 hative data and 15 converted]	
	Feeding Behavior 1/1 Iog(1/mol/L) [0 native data and 13 converted] mg/L [10 native data and 3 converted]	
	Erowth 10/10 M: 2/2 mg/L mg/L M: 31.7 mg/L M: 31.7 mg/L	M: 71 mg/L
	mol/m ³ [0 native data and 13 converted]	
Data Gap Filling Settings		M: 180 ppm _ M: 20 (8.8÷8
Only endpoint relevant	48 h Converted data	
	Animalia (animals) 10 from scale/unit mg/L	
t this position:	Arthropoda (arthropods) 1 from scale/unit mol/L	
Select a cell with a rigid (bold) path	Branchiopoda (branchiopo 2 from scale/unit µg/L 5	
Automated workflows 0 Standardized workflows 0		
orandarazed worknows	EC0 1/2	
		M: 9.4 (6.9+
	EC50 11/13 M: >100 mg/L M Chemicals 11/11; Data 13/13 OK Cancel M: 1.9 (1.5+24)	
	- Mortality 15/115 M: 24 mg/L M: 44 mg/L M: 56 mg/L M: 10 mg/L M: 12-03 mg/L M: 210 mg/L M: 7 (5.9+8.4) m, M: 5.15 mg/L	A 275 (250 + 301 M: 21.8 (19.7
		3 A: 21.8 (19.7
	Population 9/108 M: 0.14 mg/L M: 0.02 mg/L M: 3.1.1 mg/L M: 1.1 mg/L M: 1.5 mg/L M: 16 mg/L M: 0.02 mg/L M: 0.07 (0+1.28)	
	Sediment Toxicity	_
	Image: Terrestrial Toxicity 6/13 M: 578 mg/L M: 15 mmol M: 26 mmol M: 2 %	
	Human Health Hazards 1/1 M: 426 mg/kg	

1. Go to <u>**Data Gap Filling**</u> module; 2. Found the target chemical (2-Butanamine); 3. Click on the cell corresponding to target endpoint (yellow highlighted row); 4. Click **Trend analysis**; Possible data inconsistency window appears, click **OK** (5)

Phase I: Evaluation of Category & Data Gap Filling Step 4. Data Gap Filling for 2-Butanamine

Phase I: Evaluation of Category & Data Gap Filling

Step 4. Data Gap Filling for 2-Butanamine/<u>Subcategorize by</u> <u>OFG(nested)</u>

There are many profilers to be used for subcategorization. The most suitable profilers (the green ones) does not found any dissimilar chemical. In this respect the structure-based OFG (nested) profiler is used for refining the category: 1. Open **Select/filter data, Subcategorization**; 2. Click on **OFG (nested)** then 3. Click **Remove selected** button

QSAR TOOLEOX

Phase I: Evaluation of Category & Data Gap Filling Step 4. Data Gap Filling for 2-Butanamine/<u>Predicted result</u>

	► Data Category definition ► Data C		eport							X 8 5 6 0 9 9 9 9
Cap Filing Workflow Can Cap Filing Control of the c										The OECD QSAR Tool for Grouping Chemica into Categories
	Filter endpoint tree	12 [target]	1	3	9	13	14	16	19	Developed by LMC, B
Documents Document 1	Structure	H ₃ C (HH2	H3C~~NH2	HgC NH2	300000000	P50	HgC	нус	15 19	
	Animalia (animals) Arthropoda (arthropods) Branchiopoda (branchiop	0								
	Daphnia magna									
		1/2		M: 95 mg/L M: 260 mg/L	•					
		7/8			• M: 1.9 (1.5÷2.4)	M: 9.4 (6.9÷12)	M: 8.6 (7÷11) m.	M: 56 (27 ÷ 170)	M: 0.58 (0.39÷0	
		3/68 M: 275 (250÷301.	-	M: 56 mg/L		M: 21.8 (19.7÷24			M: 1.04 mg/L	
		3/23	M: >1E+03 mg/L	M: 0.129 mg/L				M: 1E-09 ug/cell		
	Population 4	4/28	M: 0.14 mg/L	M: 31.1 mg/L	M: 0.07 (0+1.28)				M: 1.51 mg/L	
	Sediment Toxicity Terrestrial Toxicity 5	/12	M: 578 mg/L	M: 15 mmol	M: 2 %			M: 506 mg/L	M: 1.08 mg/cm2	
Data Gap Filling Settings	Human Health Hazards Profiling Predefined US-EPA New Chemical Categories	Aliphatic Amines	Aliphatic Amines	Aliphatic Amines	Aliphatic Amines	tes	Aliphatic Amines	Aliphatic Amines	Aliphatic Amines	
Only endpoint relevant	- Endnoint Snarifir									
At this position: QSARs 0	Descriptors			Predicted:	79 mg/L	C50, based on 7 val				Select / filter data
Automated workflows 0 Standardized workflows 0	Prediction			Model equation: EC	50 = 2.34 (±0.337) + 0.8	22 (±0.154) * log Kow, lo	g(1/mol/L)			Subcategorize
In nodes below:	Adequacy							•		Mark chemicals by WS
QSARs 0										Mark chemicals by descriptor value
Automated workflows 0 Standardized workflows 0	Cumulative frequency					•	•			Mark outliers
						-				Filter points by test conditions
	Residuals			••	•					Mark focused chemical
										Mark focused points
	2									Remove marked data
	-0.5	0	0.5	1	1.5 log Kow	2	2.5	3	3.5	4 Accept prediction

<u>Phase I:</u> Evaluation of Category & Data Gap Filling Step 4. Data Gap Filling for 2-Butanamine/<u>Cumulative frequency</u>

QSAR TOOLBOX	► Profiling ► Data ► Category defi	01010 01 0 10100 ition > Data Gap Filling	► Report							X 0 5 4 0 94 99
Gap Filing Workflow Cap Filing Ca	4									The OECD QSAR Toolbo for Grouping Chemicals into Categories
Documents		▼ 12 [target] 1	3	9	13	14	16	19		Developed by LMC, Bul
Document 1 Document 1 (C: 19;Md: 379;P: 0) Aliphatic amines.smi (C: 12;Md: 281;P: 0) Enter GF(TA) (C: 8;Md: 198;P: 0) Subcategorized: Organic funct	Structure	H3C H3C H3C	H3C NH2	NJC~~~~~NHC	HyC	HgC	HgC	750		
	Animalia (animals)									
	- Arthropoda (arthropods)									
	Branchiopoda (branchiopo Daphnia magna									
		1/2	M: 95 mg/L							
		1/2	M: 260 mg/L							
		7/8 M: >100 n /68 M: 275 (250÷301., M: 24 mg/		30 M: 1.9 (1.5÷2.4) M: 5 15 mo/l	M: 9.4 (6.9÷12) M: 21.8 (19.7÷24			M: 0.58 (0.39÷0 M: 1.04 mg/L		
			3 mg/L M: 0.129 mg/L		- W. 2 10 (1977 - 24.		M: 1E-09 ug/cell			
		/28 M: 0.14 m	g/L _M: 31.1 mg/L	M: 0.07 (0+1.28)				M: 1.51 mg/L		
	Sediment Toxicity Terrestrial Toxicity 5/	12 M: 578 mg	/L M: 15 mmol	M: 2 %			M: 506 mg/L	M: 1.08 mg/cm2		
	Human Health Hazards	12		11.2.70			Will Sold Hig/ E	With the Higherine		
						\square				
Data Gap Filling Settings	US-EPA New Chemical Categories	Aliphatic Amines Aliphatic A	mines Aliphatic Amin	es Aliphatic Amines	Aliphatic Amines	1	Aliphatic Amines	Aliphatic Amines		
✓ Only endpoint relevant	- Endmoint Snarific									
At this position:										
QSARs 0	Descriptors			95% of Residu	als ≤ 0.243, log(1/	mol/L)				Select / filter data
Automated workflows 0 Standardized workflows 0										Subcategorize
In nodes below:										Mark chemicals by WS
QSARs 0 Automated workflows 0	Adequacy 20 Cumulative frequency									Mark chemicals by descriptor valu
Standardized workflows 0 Standardized workflows 0	Residuals									Mark outliers
										Filter points by test conditions
	Statistics g									Mark focused chemical
										Mark focused points
	0									Remove marked data
	o 0.02	0.04 0.06	0.08	0.1 0. Resi	12 0.14 duals, Y - Y.calc	0.16	0.18	0.2	0.22 0.24	Accept prediction
	1 Cumi	lative free	money	ic loce	than	0 24		nite		

Phase I: Evaluation of Category & Data Gap Filling Step 4. Data Gap Filling for 2-Butanamine/<u>Statistics</u>

QSAR TOOLBOX		Profiling D		efinition Data		Report							
Gap Filling	Workflow												The OECD QSAR Too for Grouping Chemic into Categories
id analysis Read across (Q)SAR Standa	rdized Automated			8		_	•				10		Developed by LMC, I
Documents		Filter endpoint tree		T2 [target]	1	3	9	13	14	16	19		(
Document 1 □ [C: 19;Md: 379;P: 0] Aliphatic amines.smi ✓ ⊞ [C: 12;Md: 281;P: 0] Enter GF(TA) □ [C: 8;Md: 198;P: 0] Subcategoriz	ed: Organic functional	Structure		HyC	HyC MP	H3C_NH2	55~~~~~112	H9C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	HyG	HJC	nf		
		Anima	lia (animals)										
			thropoda (arthropods)										
			Branchiopoda (branchi	оро									
		· ا											
			EC0	1/2		M: 95 mg/L							
			EC100	1/2		M: 260 mg/L	•						
			L EC50	7/8	M: >100 mg/L		0M: 1.9 (1.5÷2.4)						
		Mortality			+ 301 M: 24 mg/L	.M: 56 mg/L	M: 5.15 mg/L	M: 21.8 (19.7÷24.	M: 56.6 (53.8+59.		_M: 1.04 mg/L		
		Physiology		3/23 4/28		/L _M: 0.129 mg/L	•			M: 1E-09 ug/cell	• M: 1.51 mg/L		
				4/28	M: 0.14 mg/L	.M: 31.1 mg/L	M: 0.07 (0÷1.28)	•			M: 1.51 mg/L		
		Terrestrial Toxici		5/12	M: 578 mg/L	M: 15 mmol	M: 2 %			M: 506 mg/L	M: 1.08 mg/cm2		
		Human Health Haza		5/12	Wi: 578 Hig/L	Wi: 15 Million	IVI. 2 /0			Mi 500 mg/L	M: 1.06 mg/cm2		
		Profiling	ius										
	,	< rioning						1					
Data Gap Filling Setting	js												
		Descriptors	Statistical characteristic	CS				TA mod					Select / filter data
Only endpoint relevant		· · ·	Number of data points	, (N)				7				^	
At this position:		Prediction	Coefficient of determin					0.974					Subcategorize
OSARs	0		Adjusted coefficient of					0.969					Mark chemicals by WS
Automated workflows	ŏ	Adequacy	Coefficient of determin		it, (Q2)			N/A					Mark chemicals by Wo
Standardized workflows		Cumulative frequency	Sum of squared residua Standart deviation of re					0.220					Mark chemicals by descriptor val
In nodes below:		Cumulative frequency	Standart deviation of re Sample standart deviat					0.177					Mark outliers
QSARs		Residuals	Fisher function, (F)	ion or residuals, (s)				189					Mark outliers
Automated workflows	0		Fisher treshold for stati	stical significance. (a)			10.0 (95.0%)					Filter points by test conditions
Standardized workflows		Statistics			,								Mark focused chemical
													Wark locused chemical
			b0										Mark focused points
			- model descriptor					Intercept					Remove marked data
			- coeff. value					2.34					Remove marked data
			- coeff. range					±0.337					Clear existing marks
			- significance - max covariation					No 0.377 vs log Kow					-
			- max covariation					0.577 VS log KOW					Gap filling approach
			b1										Accept prediction
												·	, v

1. Coefficient of determination is higher - 0.974

Phase I: Evaluation of Category & Data Gap Filling Step 4. Data Gap Filling for 2-Butanamine/<u>Interpretation of the</u> <u>result</u>

- The structurally similar analogs across category of aliphatic amines is used for data gap filling
- Subcategorization by Organic functional groups(nested) is applied
- The prediction based on the defined category is acceptable.
- The predicted value based on predefined category of aliphatic amines is 79.0 mg/l

Outlook

- Background
- Keywords
- Category evaluation overview
 - <u>Phase I.</u> Evaluation of Category & Data Gap Filling

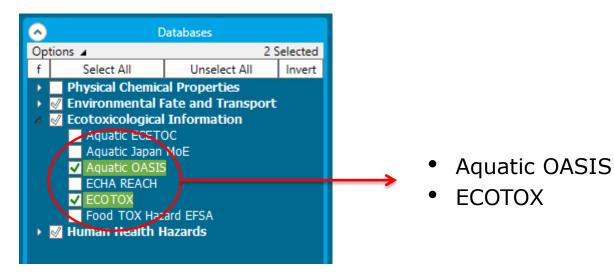
• <u>Phase II.</u> Extension of the Category& Data gap Filling

Phase II: Extending the category & data gap filling

- The extension of the category is performed by using Phase II of the category evaluation process (*Extending the category & data gap filling*). Other analogues are searched in the Toolbox, which are structurally and mechanistically consistent with the predefined category.
- The structural analogues could be defined using ECOSAR grouping

🖂 📮 🔛	rkflow													for Grou	CD QSAR Toolb uping Chemical tegories
d analysis Read across (Q)SAR Standardize	ed Automated								-			10			ped by LMC, Bu
Documents Document 1 [G: 19:Md: 379:P: 0] Aliphatic amines.set IG: 19:Md: 281:P: 0] Enter GF(TA) Image: Circle & Circ	Filter endpoint tree	₹ 1	HjC		3 H3C 10H2	4 nc~m	HgC CHg	0 H3C 043 H3C 043	HO CH3	8 **~~~~ ⁽ⁿ)	y 1500000		11 HgCNHz	12 HgCNHg	13 "yc~~~~
	± Structure info														
	📮 Parameters														
	L-⊞ 3D														
	Physical Chemical Properties														
	Environmental Fate and Transport	2/14			M: 1.14 log(L/kg)	M: 1.6 log(L/kg)									
	Ecotoxicological Information														
		AW SW													
	+ Avoidance	1/1				M: 140 mg/L									
	+ Behavior		4: 19 mg/L	M: 22 mg/L	M: 141 mg/L	M: 52 mg/L	M: 4.6 (1.9÷11.1)		M: 327 mg/L	M: 9.5 mg/L	•				M: 21.8 (
		1/1		M: 3.2E+03 mg/			M 501								
	Development	2/2			M: 93.2 mg/L	M: 40 mg/L	M: 591 mg/L								_
	Feeding Behavior Growth	1/1 10/10 N	1: 272 mg/L		M: 938 mg/L	M: 40 Mg/L	M: 448 mg/L	M: 581 mg/L	M: 639 mg/L		M: 31.7 mg/L				M: 71 mg
		10/10 1	n: 272 mg/c		Wi. 550 mg/c		Wi. 440 Hig/L	Wi. Softing/c	Wi. 039 Hig/ L		Wi. 51.7 Hig/c				Wi. 7 Ting
Data Gap Filling Settings		14/30 N	1: 19 mg/L	M: 50 mg/L	M: 95 mg/L	M: 31 mg/L		M: 136 (112+166	i	M: 0.62 mg/L	M: >8.3 mg/L			M: 180 ppm	M: 20 (8.0
	48 h									-					• •
Only endpoint relevant	- Animalia (animals)														_
t this position:	Arthropoda (arthropo	ds)													
Select a cell with a rigid (bold) path	Branchiopoda (br	anchiopo													
Automated workflows 0	- 🖓 Daphnia mag	na													
Standardized workflows 0	EC0	1/2			M: 95 mg/L										
	EC100	1/2			M: 260 mg/L										
	EC50	11/13 ^N	/l: >100 mg/L	M: 48.6 mg/L	M: 163 (147÷180		M: 91.6 (77.1÷10				M: 1.9 (1.5÷2.4)				M: 9.4 (6.
	- + Mortality	15/115 N	/l: 24 mg/L	M: 44 mg/L	M: 56 mg/L	M: 10 mg/L	M: 1E+03 mg/L	M: 28 mg/L	M: 210 mg/L	M: 7 (5.9+8.4) m.	M: 5.15 mg/L			M: 275 (250+301	1., M: 21.8 (1
	+ Physiology	6/30 N	4: >1E+03 mg/L	M: 3.5 mg/L		M: 1.3E-08 ug/ce	II M: 1E-09 ug/cell	_							1
	+ Population	9/108 N	1: 0.14 mg/L	M: 0.02 mg/L	M: 31.1 mg/L	M: 1.1 mg/L	M: 1.5 mg/L	M: 16 mg/L		M: 0.02 mg/L	M: 0.07 (0+1.28)				
	Sediment Toxicity														
	Terrestrial Toxicity		1: 578 mg/L		M: 15 mmol	M: 26 mmol					M: 2 %				
	🛨 Human Health Hazards	1/1		M: 426 mg/kg											
	Profiling														

1. Go back to *Input* section; 2. Select the row with "Aliphatic amines" from the documented tree


📼 🔛 📼 . 😪	Workflow														
Documents cument 1 [C: 19;M:379;P: 0] Aliphatic amines.smi [E] [C: 12;M:379;P: 0] Enter GF(TA) [E] [C: 8;Md: 198;P: 0] Subcategorized: Orc	Filter endpoint tree Structure	Ţ	H3C~~^AH2	2	3 H _a c _{vet2}	4 *****	5 H ₃ C NH ₂ CH ₃	6 H3C H3C	7	8	9 10	11 	12 	13 IH2 ^{Hyd}	14 н _ј с.,
			J						\frown	10	Set as new target				_
	Structure info Parameters								2		Edit and set as new target				
	Physical Chemical Prop	perties								2	Chemical information				
	Environmental Fate and		1		M: 1.14 log(L/kg) M: 1.6 log(L/kg)									
	Ecotoxicological Inform										Add in category	•			
	Aquatic Toxicity	AW SW				140 4					Add target	•			_
	Avoidance Behavior	1/	5 M: 19 mg/L	M: 22 mg/L	M: 141 mg/L	M: 140 mg/L M: 52 mg/L	M: 4.6 (1.9÷11.1)		M: 327 mg/L	M: 9	Delete			M: 21.8 (19.7÷24	4
	Biochemistry	5/3/ 1/	-	M: 3.2E+03 mg/	•	. Will be highe	. W. 4.0 (1.5 · · · · ·).		in seringre		Delete			11.21.0 (15.7 - 2	
	- Development	2/2	2		M: 93.2 mg/L		M: 591 mg/L				Focus				
	+ Feeding Behavio					M: 40 mg/L					Query tool matrix	Ctrl+F3			
	+ Growth	10/10) M: 272 mg/L		M: 938 mg/L		M: 448 mg/L	M: 581 mg/L	M: 639 mg/L			Carris		M: 71 mg/L	M: 16
		14/20) M: 19 mg/L	M: 50 mg/L	M: 95 mg/L	M: 31 mg/L		M: 136 (112÷166		M: 0	Set AOP target		M: 180 ppm	M: 20 (8.8÷84)	M- 20
	48 h	14/5	, wi. 19 hig/c	. M. 50 mg/c	. With So mig/ c	. With Sitting/C	•	IN. 150 (112+100		141. 0	Сору		Mi. 100 ppm	Wi. 20 (0.0+04)	191. 2
Data Gap Filling Settings	- Animalia	(animals)								_					
Only endpoint relevant		opoda (arthropods)													
		ranchiopoda (bra													_
At this position:		Daphnia magna EC0 1/2			M: 95 mg/L										
QSARs 0 Automated workflows 0		EC100 1/2			M: 260 mg/L	•									
Standardized workflows 0			M: >100 mg/L	M: 48.6 mg/L	M: 163 (147+180		M: 91.6 (77.1+10				M: 1.9 (1.5+2.4)			M: 9.4 (6.9+12)	. M: 8.
n nodes below:	- + Mortality		5 M: 24 mg/L	M: 44 mg/L	M: 56 mg/L	• _M: 10 mg/L	M: 1E+03 mg/L	M: 28 mg/l	M: 210 mg/L	M· 7 (5 9 ± 1	3.4) m, M: 5.15 mg/L		M: 275 (250 +	01., M: 21.8 (19.7÷24	4 M-56
QSAR₅ 0	Physiology) M: >1E+03 mg/L	-	M: 0.129 mg/L	M: 1.3E-08 ug/ce		in zo ng/c	in zronge		, and the set of high to		111275 (2501)	10 martin 2 mo (15.7 - 2	
Automated workflows 0 Standardized workflows 0	Depulation	9/10	3 M: 0.14 mg/L	M: 0.02 mg/L	M: 31.1 mg/L	M: 1.1 mg/L	M: 1.5 mg/L	M: 16 mg/L		M: 0.02 mg	y/L M: 0.07 (0+1.28)				
Standardized workflows 0	Sediment Toxicity														_
	Terrestrial Toxicity Human Health Hazards		M: 578 mg/L	M: 426 mg/kg	M: 15 mmol	M: 26 mmol					M: 2 %				_
		s 1/1	•	M: 420 mg/kg											

SAR TOOLBOX		X 6 5 7 8 문헌
Gap Filling Workflow		The OECD QSAR Toolbox for Grouping Chemicals into Categories
Document Document 1 C: 19.Mdd 3799-01 Aliphatic amines smi E: C: 12.Mdd 3799-01 Aliphatic amines smi E: C: 12.Mdd 3291-01 Sub-attegranes do game functional groups (I: C: 19.Mdd 8,19:01 Select from: Aliphatic aminescani I: C: 19.Mdd 8,19:01 Select from: Aliphatic aminescani I: C: 19.Mdd 8,19:01 Select from: Aliphatic aminescani	Filter endpoint tree Filter endpoint tree Structure Struc	Developed by LMC. Bulg
Data Gap Filling Settings Only endpoint relevant	Comparing the second seco	
t this position: QSARs Automated workflows Standardized workflows		
n nodes below: QSARs Automated workflows Standardized workflows		
	c	

1. The target chemical 2-Butanamine is loaded in new data matrix; 2. Moreover a new level appears in the documented tree. The latter allows easy go back and forward to different stages of the workflow.

- The ECOSAR strict category is used to define a broader category used in further analysis. The "Strict" option means that only the defined categories should be present in the found analogues and not any others.
- The same endpoint: EC 50 48h *D.magna* will be predicted as with the predefined category

- Define ECOSAR category
- Before defining the category, the following databases related to the target endpoint are selected (databases highlighted in green are those which have data for the target endpoint):

Phase II: Extending the category & data gap filling Step 1: Category definition/Defining ECOSAR (strict)

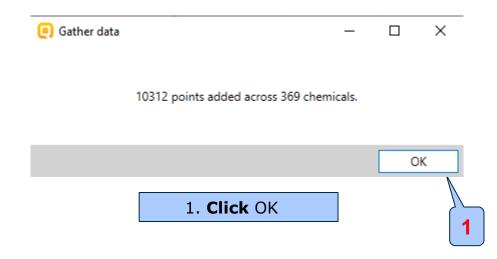
	Profiling		Hore 10 000 Gap Filling	
Categorize	Category consistenc Category elements		Grouping options (Aquatic toxicity classification by ECOSAR) — X Target categories	
	Filter endpoint tree	1 [target]		
Occuments Document 1 [C: 19:Md: 379:P: 0] Aliphatic amines.smi [C: 12:Md: 281:P: 0] Enter GF(TA) [C: 8:Md: 198:P: 0] Subcategorized: Organic functional grou [C: 1:Md: 8:P: 0] Select from: Aliphatic amines.smi	Structure Structure info Parameters Physical Chemical Properties		Aliphatic Amines	
	Environmental Fate and Transport			
	Ecotoxicological Information			
	Aquatic Toxicity AW SW			
<>	Intoxication 1/2 44 h 1/2 48 h Animalia (animals) Granchiopoda (branchiopods) Daphnia magna ECS0 Mortality 1/6	M: 180 ppm	Options Down Up Reset Options	
Aquatic toxicity classification by Options	Sediment Toxicity		(N/A) ^	
Options ∡ 2 Selected f Select All Unselect All In 2 Options	Terrestrial Toxicity Human Health Hazards		Acid Halides	
∠ Suitable	Profiling		Acid molety	
Acute aquatic toxicity classification by Volumir (Modified) Acute aquatic toxicity MoA by OAST Aquatic toxicity classification by ECOSAR US-EPA New Chemical Categories Plausible Chemical elements Groups of elements Hydrolysis half-life (Ka, pH 7)(Hydrowin)			Combine profiles AND OR Strict Sort results	
Hydrolyss half-life (Ka, pH 8)(Hydrowin) Hydrolyss half-life (Kb, pH 7)(Hydrowin) Hydrolyss half-life (Kb, pH 8)(Hydrowin) Hydrolyss half-life (pH 6.5-7.4) Ioncation at pH = 1 Ioncation at pH = 4 Ioncation at pH = 7.4			ок 5	
			2. Highlight "Aquatic toxicity Define; 4. Select Strict. 5. Click OK	

Phase II: Extending the category & data gap filling Step 1: Category definition/Defining ECOSAR (strict)

		Frofling • Data • Category definition • Data Gap Filling • Report	X 🔹 🛧 🖉 🗊
Document The migroritera. Iter wijsoritera. Iter wijsor	II III 🗣 📲 😣		for Grouping Chemicals into Categories Developed by LMC, Bulga
Aquete basedy devidencem by VCOSA Select All Undexistation by VCOSA Acute source (Sterring) Predinged devidencem by VCOSA	xcument 1 [C: 19M4: 379;P: 0] Aliphatic amines.smi ∰ [C: 12M4: 281;P: 0] Enter GF(TA) ⓑ [C: 8;M4: 198;P: 0] Subcategorized: Organic functional grou 월 [C: 13M4: 8;P() Select from Alphatic amines.smi	Structure $m_{m} = \int_{-\infty}^{\infty} $	
Aqualet toxicity (desoffication by ECOSAR or 0 Select al select All Unselect All		Ectoxicological Information CAugustic Toxicity AW 5W Augustic Toxicity AW 5W Augustic Toxicity AW 5W Augustic Toxicity Add b A	
Jaushie Intomic spectra Class 2 (less inet Intomic spectra Intomic spectra Croups of elements Acute aquatic toxicity dassification by Class 2 (less inet Intomic spectra Intomic spectra Vydotoks half-fie (Ko, pH 2)(Hydrown) Acute aquatic toxicity classification by ECOS Narcotic Amme Intomic spectra Intomic spectra Vydotoks half-fie (Ko, pH 2)(Hydrown) Hydroks half-fie (Ko, pH 2)(Hydrown) H	ions OSelected Select All Unselect All Invert Suitable Acute aquatic toxicity classification by Verhaar (Modified) Acute aquatic toxicity vMOA by OASIS Aquatic toxicity classification by ECIOSAR	Sediment Toxicity Terrestrial Toxicity Human Health Hazards Profiling Profiling	
Organic functional groups	US-EPA New Chemical Categories Plausable Chemical elements Erroups of elements Hydrolysis haf-file (Ka, pH 7)(Hydrowin) Hydrolysis haf-file (Ka, pH 7)(Hydrowin) Hydrolysis haf-file (Kb, pH 7)(Hydrowin)	Endpoint Specific Acute aquatic toxicity classification by Class 2 (less inert Acute aquatic toxicity MOA by OASIS Narcotic Amine	

1. A message appears informing that 370 analogs are found. Click **OK**

Phase II: Extending the category & data gap filling Step 1: Category definition/<u>Reading data</u>


- The Toolbox will now retrieve those chemicals that have the same ECOSAR functionality as the target compound.
- The Toolbox automatically requests the user to select the endpoint that should be retrieved.
- The user can either select the specific endpoint or by default choose to retrieve data on all endpoints (see below).

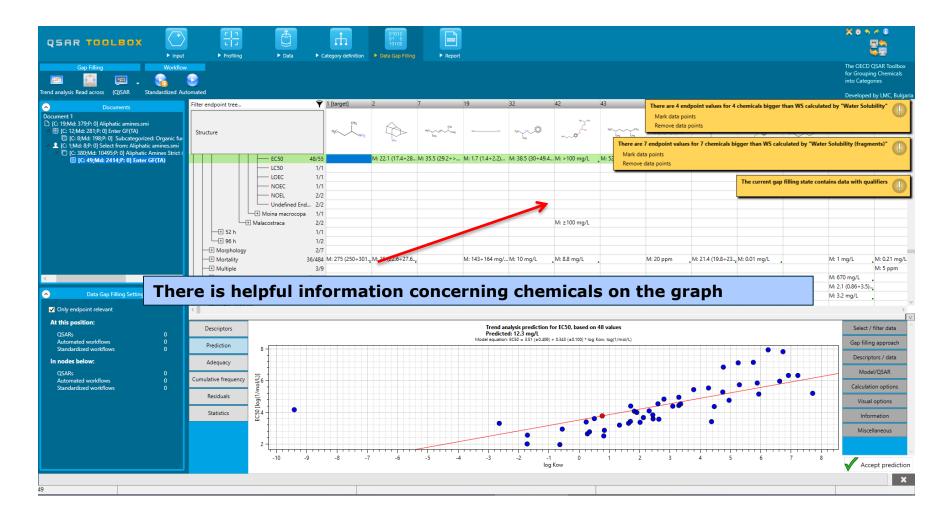
💽 Read data?																																											>	<		
All endpoints O Choose																																														
																													[С)k	(]		C	a	n	c	e]	

 In this example, as only databases are selected that contain information for aquatic toxicity endpoint, both options give the same results.

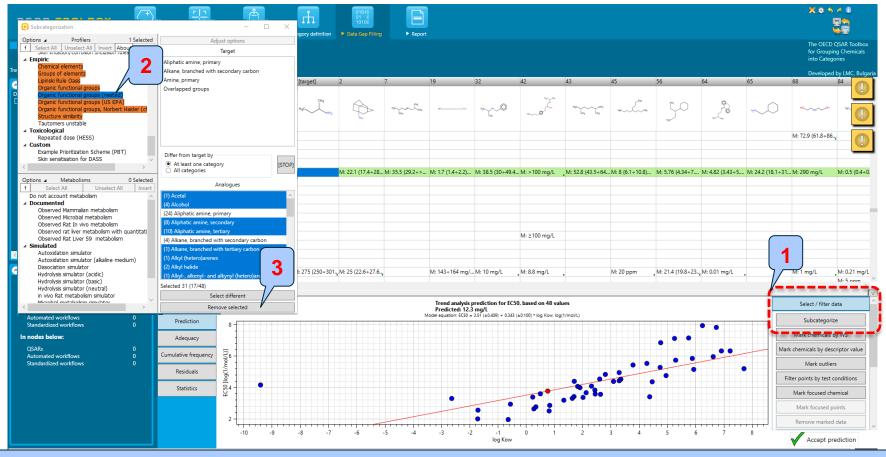
Phase II: Extending the category & data gap filling Step 1: Category definition/<u>Reading data</u>

The system automatically gives an indication for the number of experimental data points gathered

Outlook

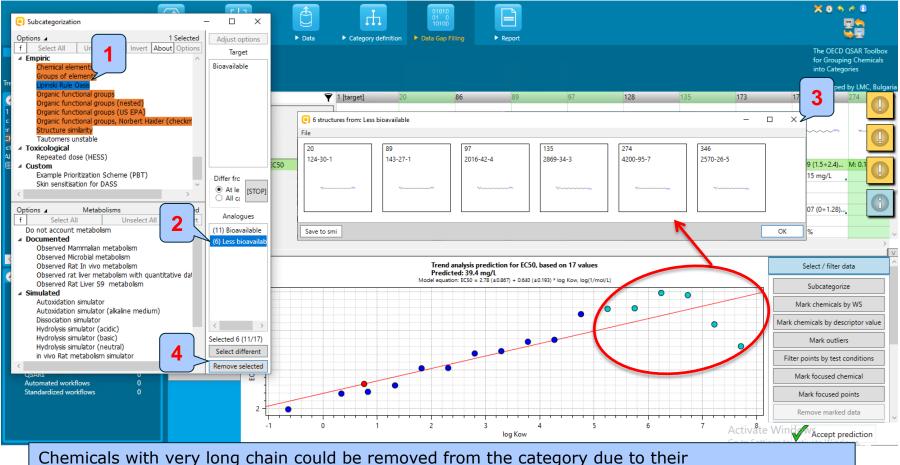

- Background
- Keywords
- Category evaluation overview
 - Phase I. Evaluation of Category & Data Gap Filling
 - <u>Phase II.</u> Extending the Category& Data gap Filling
 - <u>Step 1:</u> Category definition
 - <u>Step 2</u>: Navigate to the target endpoint this is already done, so it is skipped
 - Step 3: Data Gap Filling

Phase II: Extending the category & data gap filling Step 3: Data Gap Filling


	Porfiling Data Category definition Data Gap Filing Report	The OECD QSAR Too for Grouping Chemi into Categories
d analysis f e R Standardized Aut	mated Possible data inconsistency - X Filter endpoint tree Filt	Developed by LMC, 12 13
Documents Unrent 1 [C: 19M4: 3799-0] Aliphatic amines.smi II: 1: 24M-2811-0] Detre GF(TA) II: 1: 24M-2811-0] Detre GF(TA) II: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1:	Structure $m_{\mu} $	
Data Gap Filling Settings	↓ Animalia (animals) ↓ ↓ Animalia (animals) ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	
2 Only endpoint relevant At this position: Select a cell with a rigid (bold) path Automated workflows 0 Standardized workflows 0	LOEC 1/1 Oright [43 rative data and 9 converted] NOEL 1/1 Oright [43 rative data and 9 converted] NOEL 18/23 Oright [43 rative data and 9 converted] Undefined End. 2/2 Oright [43 rative data and 9 converted] Daphnia pulex 1/2 Oright [43 rative data and 9 converted] Moins macrocopa 1/1 Converted data Minsemacrocopa 1/1 45 from scale/unit mg/L	
	4 from scale/unit mol/L 4 from scale/unit mol/L 4 from scale/unit µg/L 2 2 2 2 4 from scale/unit µg/L 2 2 2 4 from scale/unit µg/L 2 2 4 from scale/unit µg/L 2 4 from scale/unit µg/L 4 from scale/unit µg/L 4 from scale/unit µg/L 4 from scale/unit µg/L 2 4 from scale/unit µg/L 4 from scale/unit µg/L 4 from scale/unit µg/L 4 from scale/unit µg/L 2 4 from scale/unit µg/L 4 from scale/unit	M: 0.32 ppm
	Image: Construction of the state o	M: 360 ppb

1. Go to *Data Gap filling* and select **Trend analysis**; 2. The user will be informed If there is different experimental data. Click **OK**.

Phase II: Extending the category & data gap filling Step 3: Data Gap Filling


Phase II: Extending the category & data gap filling Step 3: Data Gap Filling/<u>Subcategorize by OFG(nested)</u>

In order to refine the obtained category with analogues few subcategorizations are applied: 1. Open **Select/Filter data**, then click **Subcategorize**; 2. Select **Organic functional groups(nested)**; 3. Chemicals which are structurally dissimilar (highlighted in light blue on the chart) are removed.

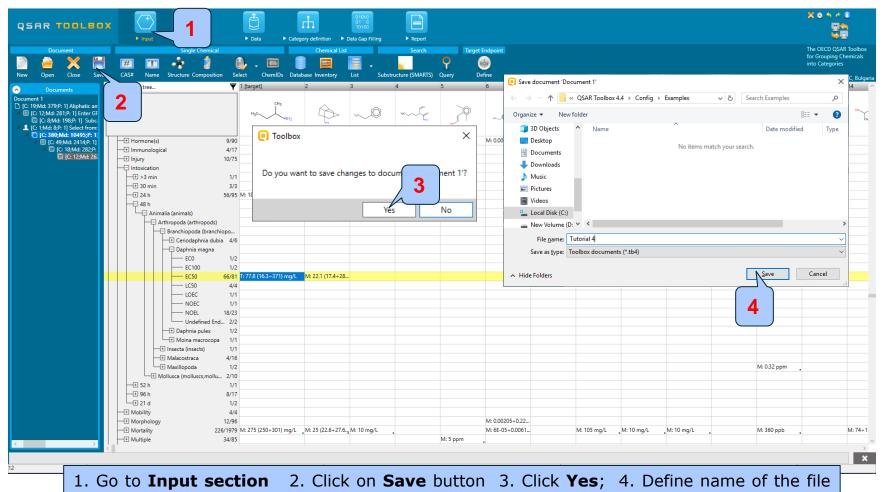
QSAR TOOLEOX

Phase II: Extending the category & data gap filling Step 3: Data Gap Filling/<u>Subcategorize by Lipinski rules</u>

less-bioavailability. In this respect: 1. Select **Lipinski rules**; 2. Double click to see "Lessbioavailable" chemicals; 3. Close the appeared window; 4. **Remove selected** 6 chemicals

Phase II: Extending the category & data gap filling Step 3: Data Gap Filling/<u>Prediction result</u>

Locuments μ_{1} μ_{2} $\mu_$	analysis Read across (Q)SAR Standardized Aut														for Grouping Chen into Categories Developed by LMC
Break 2418 0 [East 2740 and 1840 between the set of the set o	ument 1 C: 19;Md: 379;P: 0] Aliphatic amines.smi	Filter endpoint tree	•	H ₃ C	**	*******	175 **~~~~~		328 нас	329	337 "sc~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	364 HgC	365 #3C~~~~~~ ^{Na} te	369 H ₃ C	373 Hyc NH2
CAR Converting 0 <t< td=""><td> Example 12 (C: 49;Md: 2414;P: 0) Enter GF(TA) [C: 18;Md: 282;P: 0] Subcategorized: Or </td><td>Arthropoda (arthropods) Branchiopoda (branchiop G Daphnia magna</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>M: 95 mg/L</td></t<>	 Example 12 (C: 49;Md: 2414;P: 0) Enter GF(TA) [C: 18;Md: 282;P: 0] Subcategorized: Or 	Arthropoda (arthropods) Branchiopoda (branchiop G Daphnia magna													M: 95 mg/L
Data Coop Falling Setting: No.21 (2) 200 Mic. 27 (200-301, Mic. 22 mg/L, Mic. 2009 Smg/L, Mic. 216 (202-2, Mic. 515 mg/L, Mic. 104 mg/L, Mic. 126 mg/L, Mic. 127 mg/L, Mic															- ·
Chal Gap Feing Setting Chal Gap Feing Seting Chal Gap Feing Setting Chal Gap Feing Setting Chal Ga														-	
Data Gap Filing Settings Offer Collings Method Sign Filing Settings Method Sig							WI: 2.10 (2.02+2	WI: 5.15 mg/L	. W: 10.0 mg/L	. M: 1.04 mg/L	WI: 21.0 (19.7+24.	. M: 24 mg/L	M: 50.0 mg/L	. M: 0.121 mg/L	.WI: 50 mg/L
base Gap Films Setting: Obsta Gap Films Setting: Descriptors Prediction 75 Setting: Obsta Gap Gap Gap Gap Gap Gap Gap Gap Gap Ga									M: 1E-09 ug/cell			M: >1E+03 mg/L		M: 4E-09 ug/cell	M: 0.129 mg/L
Data Gap Filling Settings Only enclosed solutions Standardized workflows Standardized workflows Standardized workflows						M: 1.28 mg/L		M: 0.07 (0+1.28)							
Data Gap Filing Setting: Image: Profiling Setting: Only endpoint relevant Image: Setting: this position: Descriptors SRA: Mutanate dworkflows Sandardized workflows Image: Setting: Sandardized workflows Image: Setting: Statistics Image: Setting:		Sediment Toxicity											-		
Data Gap Filing Settings Profiling Profiling Setter failure Setter failure Chay explore treasant this position: Calculated workflows Descriptors Predicted Alichastic A minee Setect / filter data Candradized workflows 0 Ofference Trend analysis prediction for ECS0, based on 11 values Setect / filter data Standardized workflows 0 Ofference Trend analysis prediction for ECS0, based on 11 values Setect / filter data Standardized workflows 0 Ofference Trend analysis prediction for ECS0, based on 11 values Subcategorize Standardized workflows 0 Ofference Trend analysis prediction for ECS0, based on 11 values Subcategorize Standardized workflows 0 Ofference Trend analysis prediction for ECS0, based on 11 values Mark chemicals by WS Mark chemicals by US Ofference Adequacy Ofference Mark chemicals by WS Statistics 0		Terrestrial Toxicity	7/29 .				M: 0.1 mL	M: 2 %	M: 506 mg/L	M: 1.08 mg/cm2		M: 578 mg/L		M: 8.7 mmol	M: 15 mmol
Data Gap Filling Settings Orly endpoint relevant this position: OSARs Automated workflows OGARs Standardized workflows O	>	Human Health Hazards													
Chy endpoint relevant this position: QSARs Automated workflows Standardized workflows Standardized workflows Standardized workflows Descriptors Prediction Adequacy Cumulative frequency Residuals Statistics Descriptors Prediction Adequacy Cumulative frequency Descriptors Prediction Adequacy Cumulative frequency Descriptors Prediction Adequacy Cumulative frequency Descriptors Descriptors Prediction Adequacy Cumulative frequency Descriptors Descriptor Descriptor Descriptor Descriptors Descriptor Des															
Chry reductions CSAbs Automated workflows Standardized workflows Standardized workflows 0 0 Carulative frequency Residuals Statistics 0 0 0 0 0 0 0 0 0 0 0 0 0	Data Gap Filling Settings														
CSARS Automated workflows Standardized standardized stan	Only endpoint relevant	IIS_EPA New Chemical Categories	4	Minhatic Amines											
CSARS Automated workflows Standardized standardized stan	this position:	-													
Automated workflows Standardized workflows Odde sequation: ECS = 2.3 [c0.324) + 0.838 (c0.116) * log Kox, log(1/mol/) Adequacy Cumulative frequency Residuals Statistics Statistics Odde sequation: ECS = 2.3 [c0.324) + 0.838 (c0.116) * log Kox, log(1/mol/) Cumulative frequency Residuals Statistics Odde sequation: ECS = 2.3 [c0.324) + 0.838 (c0.116) * log Kox, log(1/mol/) Cumulative frequency Residuals Statistics Odde sequation: ECS = 2.3 [c0.324) + 0.838 (c0.116) * log Kox, log(1/mol/) Cumulative frequency Residuals Statistics Odde sequation: ECS = 2.3 [c0.324) + 0.838 (c0.116) * log Kox, log(1/mol/) Cumulative frequency Residuals Statistics Odde sequation: ECS = 2.3 [c0.324) + 0.838 (c0.116) * log Kox, log(1/mol/) Cumulative frequency Residuals Statistics Odde sequation: ECS = 2.3 [c0.324) + 0.838 (c0.116) * log Kox, log(1/mol/) Cumulative frequency Residuals Statistics Odde sequation: ECS = 2.3 [c0.324) + 0.838 (c0.116) * log Kox, log(1/mol/) Cumulative frequency Residuals Statistics Odde sequation: ECS = 2.3 [c0.324) + 0.838 (c0.116) * log Kox, log(1/mol/) Mark chemicals by descriptor Mark focused chemical Mark focused chemic		Descriptors					Trend analysis p	rediction for EC5	0, based on 11 val	ues					Select / filter data
Standardized workflows 0 nodes below: OSARs Standardized workflows 0 Cumulative frequency Residuals Statistics 0 -0.5 0 0 0.5 1 115 2 2 2.5 3 3.5 4 4.45 5						N	Predicted: //.8 lodel equation: EC50 =	mg/L 2.34 (±0.324) + 0.838 (±0.116) * log Kow, log	(1/mol/L)					
Adequary Adequary Standardized workflows 0 Cumulative frequency Residuals Statistics 0 0 0 0 0 0 0 0 0 0 0 0 0		Prediction													Subcategorize
CARS Automated workflows Standardized workflows Define the statistics Define the statist	noder below:	A de aux au													Mark chemicals by WS
Automated workflows		Adequacy 6													
Standardized workflows 0 Residuals Statistics 0 Residuals 0 Residu		Cumulative frequency												Mark	chemicals by descriptor v
Statistics		Ĕ -								•					Mark outliers
Statistics		Residuals 🔁 -													lter points by test conditio
2		Statistics 8													· · · ·
2 0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Remove marked of the second						• • • • • • • • • • • • • • • • • • •	•								Mark focused chemical
2		•			•	•••									Mark focused point
															Remove marked d
		-0.5		0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	


Outlook

- Background
- Keywords
- Category evaluation overview
 - <u>Phase I.</u> Evaluation of Category & Data Gap Filling
 - Phase II. Extension of the Category& Data gap Filling
- Save the prediction result

Saving the prediction result

- This functionality allow storing/restoring the current state of Toolbox documents including loaded chemicals, experimental data, profiles, predictions etc, on the same computer. The functionality is implemented based on saving the sequence of actions that led to the current state of the Toolbox document and later executing these actions in the same sequence in order to get the same result(s).
- Saving/Loading the file with TB prediction is shown on next screenshots

Saving the prediction result

and **Save** the workflow.

Open saved file

QSAR TOOLBO	× ↓ Input Frofiling		Intro Intro Intro Internation	01010 01 0 10100 Ita Gap Filling	► Report							× • • < € ₽ ₽ ₽ ₽ ₽	
Document		🔐 🗸 🎫 📓	Chemical List	ist Substruct	ESMARTS Query Define							The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC, Bulgari	
Documents	Filter endpoint tr	1 [target]	2 3	3 4	5	6 7	8	9	10	11	12		14
nent 1 19:Md: 379:P: 1] Aliphatic an [C: 12:Md: 281:P: 1] Enter GF Md: 198:P: 1] Subc 8:P: 1] Select from:	Structure	H ₃ C NH ₂		ngu	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	андар алу ф	oq Hyli	Anto Anto Anto Anto Anto Anto Anto Anto	Qp.	der star	100	Not Cong	но
80;Md: 10495;P: 1 2: 49;Md: 2414;P: 1]	Hormone(s) 9/9	0				M-0.00064-0.00							
🗟 [C: 18;Md: 282;P:		7			Open				×				
Q [C: 12;Md: 26;	Injury 10/7	5			$\leftarrow \rightarrow \cdot \uparrow \square \circ$	← → v ↑ • « Config > Examples v ♂ Search Examples P							
	Intoxication								- 🔳 🔞				
					Organize 🔻 New	older		8==	• • • •				
		5 M: 180 ppm	M: 65 (48.3+95.1		🖈 Quick access		N 3				M: <70 ppb		
	Animalia (animals)				OneDrive								
	Arthropoda (arthropods)				This PC				-				
	Ceriodaphnia dubia 4/								-				
	Daphnia magna				New Volume (D:)								
	EC0 1/				i Network								
	EC100 1/						<		>				
	EC50 66/8		M: 22.1 (17.4÷28		F	ile name: Tutorial 4.tb4	~	Toolbox document	s (*.tb4) 🛛 🗸				
								Open	Cancel				
	NOEC 1/												
	NOEL 18/2	3							\sim				
	Undefined End 2/	2											
	- Daphnia pulex 1/	2							4				
	Hereina Moina macrocopa 1/	1											
	+ Insecta (insects) 1/												
	+ Malacostraca 4/1												
	H Maxillopoda 1/										M: 0.32 ppm		
	H Mollusca (molluscs,mollu 2/1												
						L							
	96 h 8/1					L							
						M: 0.00205+0.22							
		9 M: 275 (250÷301) mg/L	M-25 (22 6+27 6	4: 10 mg/l		M: 0.00205+0.22 M: 6E-05+0.0061	M: 105 mg/L	M: 10 mg/L	M: 10 ma/L		M: 360 ppb	-	M: 74
	Mortality 220/19/ Multiple 34/8		. ···· 20 (22:0+27:0	. is ing/c	M: 5 ppm	MI 02 00 T0.000 I.I.	wi. 103 mg/L	, m. to mg/L	. W. To mg/L	1	m. soo ppo	•	141.74

1. Create **New** document; 2. Click **Open**; 3. **Find** and **select file**; 4. Click **Open**. All the steps done during the workflow are getting executed consequentially. Once ready a message appears that the file is opened successfully, otherwise a warning message will informs you for the mistakes.