QSAR TOOLBOX

The OECD QSAR Toolbox for Grouping Chemicals into Categories

OECD QSAR Toolbox v.4.4.1

Step by step example on how to predict acute aquatic toxicity to Daphnia for 3-ethyl-5-methyl-3-methoxyphenol by the trend analysis approach

- Background
- Keywords
- Objectives
- Specific Aims
- Trend analysis
- The exercise
- Workflow of the exercise

Background

 This is a step-by-step presentation designed to take the user of the Toolbox through the workflow of a data gap filling exercise by trend analysis approach.

- Background
- Keywords
- Objectives
- Specific Aims
- Trend analysis
- The exercise
- Workflow of the exercise

Keywords

TARGET CHEMICAL – a chemical of interest

MODULE – a Toolbox module is a section dedicated to specific actions and options (e.g. Profiling)

WORKFLOW – the use, in combination, of the different modules (e.g. prediction workflow: from input to report)

PROFILER - algorithm (rule set) for the identification of specific features of the chemicals. Several types of profilers are available, such as structural (e.g. organic functional groups), mechanistic (e.g. Protein binding by OECD) and endpoint-specific (e.g. in vitro in vitro mutagenicity (Ames test) alerts by ISS) profilers.

ALERT - the profilers consist of sets of rules or alerts. Each of the rules consists of a set of queries. The queries could be related to the chemical structure, physicochemical properties, experimental data, comparison with the target or list with substances and external queries from other predefined profilers (reference queries).

CATEGORY – "group" of substances sharing same characteristics (e.g. the same functional groups or mode of action). In a typical Toolbox workflow, it consists of the target chemical and its analogues gathered according to the selected profilers

ENDPOINT TREE – Endpoints are structured in a branched scheme, from a broader level (Phys-Chem properties, Environmental Fate and transport, Ecotoxicology, Human health hazard) to a more detailed one (e.g. EC3 in LLNA test under Human health hazard-Skin sensitization)

DATA MATRIX – Table reporting the chemical(s) and data (experimental results, profilers outcomes, predictions). Each chemical is in a different column and each data in a different row

PREDICTION – An outcome obtained for the target chemical by different gap filling approach methods (e.g. read-across, trend analysis, QSAR model predictions)

TREND ANALYSIS - The appropriate data-gap filling method for "quantitative endpoints" (e.g., 96h-LC50 for fish) if a high number of analogues with experimental results are identified.

IUCLID 6 (IU6) – IUCLID is a software to record, store, maintain and exchange data on intrinsic and hazard properties of chemical substances. Toolbox has a functionality to export a prediction or import of data to/from IU6

- Background
- Keywords
- Objectives
- Specific Aims
- Trend analysis
- The exercise
- Workflow of the exercise

Objectives

- This presentation reviews a number of functionalities of the Toolbox:
 - Identify analogues for a target chemical
 - Retrieve experimental results available for those analogues
 - Fill data gaps by trend-analysis

- Background
- Keywords
- Objectives
- Specific Aims
- Trend analysis
- The exercise
- Workflow of the exercise

Specific Aims

- To review the workflow of the Toolbox.
- To review the six modules of the Toolbox.
- To reacquaint the user with the basic functionalities within each module.
- To explain the rationale behind each step of the exercise.

- Background
- Keywords
- Objectives
- Specific Aims
- Trend analysis
- The exercise
- Workflow of the exercise

Trend Analysis Overview

- For a given (eco)toxicological endpoint, the members of a category are often related by a trend (e.g. increasing, decreasing or constant). The trend could be related to molecular mass, carbon chain length, or to some other physicochemical property.
- A demonstration of consistent trends in the behaviour of a group of chemicals is one of the desirable attributes of a chemical category and one of the indicators that a common mechanism for all chemicals is involved. When some chemicals in a category have measured values and a consistent trend is observed, missing values can be estimated by simple scaling from the measured values to unmeasured values as a means of filling data gaps.

- Background
- Keywords
- Objectives
- Specific Aims
- Trend analysis
- The exercise
- Workflow of the exercise

Exercise

- In this exercise we will predict the acute toxicity to daphnids for an untested compound, (3-ethyl-5-methyl-4-methoxyphenol), which is the "target" chemical.
- The target endpoint is LC50, 48h, Mortality, *D.magna*.
- This prediction will be accomplished by collecting a set of test data for chemicals considered to be in the same category as the target molecule.
- The category will be defined using the following categorization schemes:
 - Acute aquatic toxicity classification by ECOSAR for primary grouping.
 - Acute aquatic toxicity MOA by OASIS for mechanistic refining the category.

- Background
- Keywords
- Objectives
- Specific Aims
- Trend analysis
- The exercise
- Workflow of the exercise

Workflow

- Toolbox has six modules which are used in a sequential workflow:
 - Chemical Input
 - Profiling
 - Data
 - Category Definition
 - Filling Data Gaps
 - Report

- Background
- Keywords
- Objectives
- Specific Aims
- Trend analysis
- The exercise
- Workflow of the exercise
 Chemical Input

Chemical Input Overview

- This module provides several means of entering the chemical of interest or the target chemical.
- Since all subsequent functions are based on chemical structure, the goal here is to make sure the molecular structure assigned to the target chemical is the correct one.

Chemical Input Ways of Entering a Chemical

User Alternatives for Chemical ID:

A.Single target chemical

- Chemical Name
- Chemical Abstract Services (CAS) number (#)
- SMILES (simplified molecular information line entry system) notation/InChi
- Drawing chemical structure
- Select from User List/Inventory/Databases
- Substructure by using SMART

B.Group of chemicals

- User List/Inventory
- Specialized Databases

QSAR TOOLBOX

Getting Started

- Open Toolbox.
- Click "Input".

Chemical Input by Drawing

- Input of the target chemical by drawing varies in difficulty with the structural complexity of the molecule.
- It is accomplished by a series of point-click-move-click operations within the 2D-editor which drops down when you click on "structure" (see next screen shot).
- The subsequent series of slides will take you through the process for inputting the target chemical.

Chemical Input Screen Input target chemical by drawing

1. Click **Structure** button.

Chemical Input

Drawing the target "3-ethyl-5-methyl-4-methoxyphenol" by 2-D editor

Chemical Input

Drawing the target "3-ethyl-5-methyl-4-methoxyphenol" by 2-D editor

4. Drag the mouse (pointing finger) to the appropriate atom and left-click to create a single bond.

Chemical Input by Drawing

- Note the default is addition of a CH_3 -group.
- By moving the 'finger' to other C-atoms and left clicking the mouse adds other hydrocarbon fragments.
- If you make an incorrect entry you can click the `undo' icon () in the upper corner of the screen to remove the addition.
- This process allows you to build the hydrocarbon skeleton of the target molecule (see next screen shot).

Chemical Input

Drawing the target "3-ethyl-5-methyl-4-methoxyphenol" by 2-D editor

Chemical Input

Drawing the target "3-ethyl-5-methyl-4-methoxyphenol" by 2-D editor

Chemical Input Target chemical identity

- The already drawn target structure automatically appears on the data matrix
- Note that no CAS number or name is displayed for this chemical. This means the target chemical is not listed in the chemical inventories/databases implemented in the Toolbox (see next slide).

Chemical Input Target chemical identity

The workflow on the first module is now complete, and the user can proceed to the next module.

- Background
- Keywords
- Objectives
- Specific Aims
- Trend analysis
- The exercise
- Workflow of the exercise
 - Chemical Input
 - Define target endpoint

Input Define target endpoint

- Defining of the endpoint allows entering the endpoint of interest e.g. EC3, LC50, gene mutation etc., along with specific metadata information. Based on the metadata, relevancy of the profiles and databases is provided expressed in different color highlighting:
 - In green are highlighted the most suitable profilers related to the endpoint and databases including data for the defined target endpoint,
 - In orange are colored profilers which are plausible with respect to the defined target endpoint.

Input Define target endpoint

Input Define target endpoint

qs	AR 1	TOOL	вох		+			Data	Category		01010 01 0 10100	ling	Report			
Document					mpac	Single Chemical	P Data		Chemical Li		ist		Search		Target Endpoint	
	<u></u>	×	H	#	T	🔹 💈		-					¥	9	6	
New	Open	Close	Save	CAS#	Name	Structure Composition	Select	ChemIDs	Database	Inventory	List	Subst	tructure (SMARTS)	Query	Define	
•		Documents		F	ilter endpoi	nt tree			1 [target]	_	_					
⊿ 😚 Do ∕∕	ocument 1 ' [C: 1;Md	: 0;P: 0] Sea	rch chemica	ł	Structure					Hyc Hyc	Сна					
				Ē	E Structure	info										
				E	• Paramete	rs										
					Physical C	Chemical Properties										
					Ecotoxico	ental Fate and Transport logical Information ic Toxicity ortality 48 h Animalia (animals) Arthropoda (arthru Branchiopoda Daphnia m	opods) (branchio agna	AW SW								
					Sedim Terres	ent Toxicity trial Toxicity										
					o numan H	calul nazarus										

The endpoint tree is automatically expanded to the level of the defined endpoint and the row is highlighted in yellow

Input Input results

- 1) In module *Input*, you have entered the target chemical by drawing it.
- 2) The target endpoint (aquatic toxicity, LC50) is defined using "Define target endpoint" functionality.
- 3) Based on the defined target endpoint the relevant profiles and databases become highlighted in color (see next slides).

- Background
- Keywords
- Objectives
- Specific Aims
- Trend analysis
- The exercise
- Workflow of the exercise
 - Chemical Input
 - Profiling

Profiling Overview

- "*Profiling"* module refers to the electronic process of retrieving relevant information on the target compound, other than environmental fate, ecotoxicity and toxicity data, which are stored in the Toolbox database;
- Available "profilers" includes likely mechanism(s) of action, wich could be useful in forming categories that include the target chemical;
- "Profilers" are a collection of empirical and mechanism knowledge which could be used to analyse the structural properties of chemicals;
- The "profilers" identify the affiliation of the target chemical(s) to preliminary defined categories (functional groups/alerts);
- The "Profiling" module contains also observed and simulated metabolisms/transformations, which could be used in combination with the profilers;
- The outcome of the profiling determines the most appropriate way to search for analogues, but they are also useful for preliminary screening or prioritization of substances;
- The "profilers" are not (Q)SARs, i.e. they are not prediction models themselves;
- Based on the "profilers' relevancy" (determined by the defined target endpoint), the most suitable and plausible once are getting colour highlighted.

Profilers Background

Summary information of the different profilers are provided in the "About".

The OECD QSAR Toolbox for Grouping Chemicals into Categories
Profilers Background

• For most of the profilers, background information can be retrieved by highlighting one of the profilers (for example, *US-EPA New Chemical Categories*) and clicking **View** (see next slide).

Profilers Background

Profilers Background

 Once the endpoint is selected, the relevant profiles and metabolic transformations are highlighted. The meaning of the colors can be seen within the **Options** (1) by click **Legend** (2).

	<u>ہ</u>	P	rofiling met	hods	💽 Legend		×
	Options 🖌				Endpoint	selected in the data matrix	
1	Group by:	Endpoint sele 👻		ert		Suitable	
	Sort by:	Name ~		ion by		Plausible	
	Color by:	Endpoint sele 💙	Legend<	2		Unclassified	
						ОК	

- **Suitable** developed using data/knowledge for the target endpoint;
- **Plausible** not endpoint specific; structure-based; form broader group of analogues;
- **Unclassified** all profilers, which are not classified in any of the categories above.
- Select the Profiling methods related to the target endpoint by ticking the checkbox next to the profilers name.
- This selects (a green check mark appears) or deselects (the green check disappears) profilers.

Profiling Profiling the target chemical

Profile Profile Profile Profile Profile Profile Profile Profile	Data P Category definition Data Gap Filling P Report	The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC, Bulgaria
Documents Documents Documents Documents Documents Search chemical Documents Docum	Filter endpoint tree. Image: Structure Image: B Structure info Image: Preside Chemical Properties Image: E horizonnemial Tate and Transport Image: E contrological Information Image: Image: Image: Sediment Toxicity Image: Image: Image:	
Observed Rat In vivo metabolism Observed rat liver metabolism with nuantitative data	 Select the row corresponding to the Aquatic Toxicity; Tick the checkboxes of the suitable profilers; Click Apply. 	×

Profiling Profiling the target chemical

- The actual profiling will take several seconds depending on the number and type of selected profilers.
- The results of profiling automatically appear as a dropdown box under the target chemical.
- Please note the specific profiling results obtained by the most suitable profilers.
- These results will be used to search for suitable analogues in the next steps of the exercise.

Profiling

Profiles of the target "3-ethyl-5-methyl-4methoxyphenol

	Profiling > Data > Category definition > Data Gap Filling > Report	
Apply View New Delete		
Cocuments Cocument 1	Filter endpoint tree Filter endpoint tree Structure Structure info Parameters Physical Chemical Properties Environmental Fate and Transport Ecotoxicological Information Aquatic Toxicity AW SW AW SW	
Profiling methods Options ▲ 4 Selected f Select All Unselect All ✓ Suitable Acute aquatic toxicity classification by Verhaar (Modified) ✓ Acute aquatic toxicity classification by ECOSAR US-EPA New Chemical Categories ✓ Plausible Chemical elements Groups of elements Groups of elements Groups of elements Groups of elements Hydrokyse half-life (Ka), pH 8/(Hydrown) Hydrokyse half-life (Ka), pH 8/(Hydrown) Hydrokyse half-life (Ka), pH 8/(Hydrown) Hydrokyse half-life (Ka), pH 8/(Hydrown) Hydrokyse half-life (Ka), pH 8/(Hydrown) Hydrokyse half-life (Ka), pH 8/(Hydrown) Hydrokyse smultatic (Categories acuto simulator (Sicaline medium) Disociation simulator (Acuto) Autoxidation simulator (Acuto) Hydrokyse simulator (Acuto) Metabolism simulator Hydrokyse simulator (Acuto) Hydrokyse simulator (Acuto) Metabolism simulator Observed Mammalan metabolism simulator Observed Mammalan metabolism Observed Mammalan metabolism Observed Mammalan metabolism Observed Mammalan metabolism Observed Mammalan metabolism	4 o n Animalia (animals) Branchiopoda (branchiopods) CS0 Context Sediment Toxicity Terrestrial Toxicity Huserfriedht Hazards Profiling Fredefined CS5 Profiling Cost FAN ewe Chemical Categories Endpoint Specific Acute aquatic toxicity classification by Verhaar (Modified) Acute aquatic toxicity classification by ECOSAR Phenols (Acute toxicity) Phenols and Anilines Phenols	

Profiling Profiling results

- 1) In module *Profile*, you have profiled the target chemical according to the suitable profilers (green) related to the target endpoint.
- 2) The target chemical is categorized as "phenol" based on predefined Acute aquatic toxicity US-EPA profiler (hereafter called US-EPA) and the two endpoint-specific profilers (Acute aquatic toxicity classification by ECOSAR (hereafter called ECOSAR) and Acute aquatic toxicity MOA by OASIS (hereafter called MOA)
- 3) By the endpoint-specific "Acute aquatic toxicity classification by Verhaar" the target is categorized as "Class 3 (unspecific reactivity)"
- 4) In general the target is classified as "phenol"
- 5) All of the above mentioned profilers could be used for categorization purposes (collecting analogues)
- 6) In this case ECOSAR profiler will be used for categorization purpose (primary grouping).

Outlook

- Background
- Keywords
- Objectives
- Specific Aims
- Trend analysis
- The exercise
- Workflow of the exercise
 - Chemical Input
 - Profiling
 - Data

Data

- *Data* module refers to the electronic process of retrieving the environmental fate, ecotoxicity and toxicity data that are stored in the Toolbox databases.
- Data gathering can be executed in a global fashion (i.e. collecting all data of all endpoints) or on a more narrowly defined basis (i.e. collecting data for a single or limited number of endpoints).
- Once the endpoint is selected, the relevant databases are highlighted. Meaning of the colors could be seen within the **Options** (1) by click **Legend** (2).

• In this example, we limit our data gathering to the common aquatic toxicity endpoints from databases containing aquatic toxicity data (Aquatic OASIS, ECHA REACH, ECOTOX, Food TOX Hazard EFSA).

Data

Gather data using database relevancy

QSAR TOOLBOX	► Input	► Profiling ► Data ► Categor	1	D1010 01 0 10100 Data Gap Filling > Report	
Data Import Export Gather Impc 3)6 IUCLID6	Dele Dele Database I	te			
Documents		Filter endpoint tree		1 [target]	
Options ▲ Databases Options ▲ f Select All Unselect All	4 Selected Invert	Structure Structure info Parameters		HSC-CHS	
Aquatic ECETOC		+ Physical Chemical Properties			
Aquatic OASIS		Environmental Fate and Transport			
✓ ECHA REACH ✓ ECOTOX ✓ Food TOX Hazard EFSA , Muman Health Hazards	2	Ecotoxicological Information Aquatic Toxicity Mortality 48 h Animalia (animals) Arthropoda (arthropods) Branchiopoda (branchiopods)	AW SW ,		
		Sediment Toxicity			
		Terrestrial Toxicity			
		🛨 Human Health Hazards			
		Profiling Decidefined			

- 1. Go to **Data** module;
- 2. Select the green highlighted databases corresponding to the Aquatic toxicity (Aquatic OASIS, ECHA REACH, ECOTOX, Food TOX Hazard EFSA);
- 3. Click Gather.

Data Process of collecting data

Toxicity information on the target chemical is electronically collected from the selected datasets.

A window with "Read data?" appears. Now the user could choose to collect "all" or "endpoint specific" data.

Data Process of collecting data

In this example, an insert window appears stating that no experimental data is available for the chemical of interest.

Recap

- You have entered the target chemical being sure of the correct structure.
- You have profiled the target chemical and found no experimental data is currently available for this structure.
- In other words, you have identified a data gap, which you would like to fill.
- Now you are ready to continue with next step of the workflow *Category Definition*.

Outlook

- Background
- Keywords
- Objectives
- Specific Aims
- Trend analysis
- The exercise
- Workflow of the exercise
 - Chemical Input
 - Profiling
 - Data
 - Category definition

Category Definition Overview

- This module provides the user with several means of grouping chemicals into a toxicologically meaningful category that includes the target molecule.
- This is the critical step in the workflow.
- Several options are available in the Toolbox to assist the user in defining the category definition.

Category Definition Grouping methods

- The different grouping methods allow the user to group chemicals into chemical categories according to different measures of "similarity" so that within a category data gaps can be filled by trend-analysis.
- For this example, starting from the target chemical a specific ECOSAR classification is identified ("phenols"), subsequently analogues are found within the same specific classification ("phenols") for which experimental results are available.

Category Definition ECOSAR categories - overview

- ECOSAR has been used by the U.S. Environmental Protection Agency since 1981 to predict the aquatic toxicity of new industrial chemicals in the absence of test data.
- The Aquatic toxicity classification by ECOSAR profiling scheme in the Toolbox is used for grouping of chemicals by structural similarity which may or may not have mechanistic meaning. Experience has shown ECOSAR to be a robust profiler which makes it a logical choice in an initial profiling scheme.

Category Definition Defining ECOSAR category

QSAR TOOLBOX	Profiling Data Category definition	01010 01 0 10100 Data Gap Fillint 1 Report	t
Categorize	Category consistency Category elements		
Cuments	Filter endpoint tree 🍸	1 [target]	
Aquatic toxicity classification by ECOSAR Options Aquatic toxicity classification by ECOSAR 1 Selected f Select All Unselect All Invert About Options Suitable	Structure	HSC-DOG	Grouping options (Aquatic toxicity classification by ECOSAR) - X Target_stegories Phenols
Acute aquatic toxicity classification by Vernaar (M Acute aquatic toxicity MOA by CASIC	ucture info		
Aquatic toxicity classification by ECOSAR	2 ameters		
Do-Li A. New Chemical Categorica	- sical Chemical Properties		_
Chemical elements			
Groups of elements	Aw SW		-
Hydrolysis half-life (Ka, pH 7)(Hydrowin)	Mortality		
Hydrolysis half-life (Kb, pH 7)(Hydrowin)			
Hydrolysis half-life (Kb, pH 8)(Hydrowin)	Animalia (animals)		Options
Initiation at $pH = 1$	Arthropoda (arthropods)		Davie Un Device
Ionization at pH = 4	Branchiopoda (branchiopods)		Down Op Reset Options
Ionization at pH = 7.4			All categories
Lipinski Rule Oasis	LC50		
OECD HPV Chemical Categories	Sediment Toxicity	·	Acid maides
Organic functional groups Organic functional groups (nested)	+ Human Health Hazardr		- Combine profiler -
Organic functional groups (US EPA)			Invert result
Organic functional groups, Norbert Haider (check			AND OR Strict
Protein binding by OASIS Protein binding by OECD	US-EPA New Chemical Categories	Phenols (Acute toxicity)	Sort results
Protein binding potency GSH	- Endpoint Specific		
Christian cimilarity	Acute aquatic toxicity classification by Verhaar (Modified)	Class 3 (unspecific reactivity)	OK V Cancel
	Acute aquatic toxicity MOA by OASIS	Phenols and Anilines	
	Aquatic toxicity classification by ECOSAR	Phenols	

- 1. Go to Category Definition module
- 2. Select the highlighted Aquatic toxicity classification by ECOSAR;
- 3. Click Define;
- 4. Confirm the category "Phenols" by clicking **OK**.

QSAR TOOLEOX

Category Definition Defining ECOSAR category

	ta Category definition Data Gap Filling	► Report
Categorize Category consistency Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Category consistency Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Category consistency Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Colspan="2">Colspan="2" Image: Colspan="2">Image: Colspan="2" Image: Colspan="2">Colspan="2" Image: Colspan="2">Image: Colspan="2" Image: Colspan="2">Image: Colspan="2" Image: Colspan="2">Image: Colspan="2"		
Documents	Filter endpoint tree 🍸	1 [target] 2 3 4 5 6 7 8
Occument 1 C: [Md: 0;P: 0] Search chemical [C: 1167;Md: 0;P: 0] Phenols (Aquatic toxicity classification by ECOSAR)	Structure	
	H Parameterr	
	Physical Chemical Properties	
	Environmental Fate and Transport	
	Ecotoxicological Information	
	Aquatic Toxicity AW SW	
	Mortality	
	Grouping result	ts — 🗆 X
	Animalia (anima	
	Arthropoda	
	Daor	1167 chemical(s) found.
	Sediment Toxicity	
	Terrestrial Toxicity	
Aquatic toxicity classification by ECOSAR	🛨 Human Health Hazards	
f Select All Unselect All Invert	E Profiling	
⊿ Suitable	IIS-EPA New Chemical Categories	Phenols (Acute t
Acute aquatic toxicity classification by Verhaar (Modified)		
Aquatic toxicity classification by ECOSAR	Acute aquatic toxicity classification by	Class 3 (unspecif
US-EPA New Chemical Categories	Acute aquatic toxicity MOA by OASIS	Phenols and Anil
Chemical elements	Aquatic toxicity classification by ECOS	Phenols
Groups of elements		
Hydrolysis half-life (Ka, pH 7)(Hydrowin) Hydrolysis half-life (Ka, pH 8)(Hydrowin)		
Hydrolysis half-life (Kb, pH 7)(Hydrowin)		
Hydrolysis half-life (Kb, pH 8)(Hydrowin) Hydrolysis half-life (pH 6 5-7 4)		
Ionization at $pH = 1$		
Ionization at $pH = 4$ Ionization at $pH = 7.4$		
Ionization at pH = 9		
Linineki Rulo Dacie		
1 Click OK to confirm the real	sult and to gather e	experimental data
Note: The number of chemicals	depends on the da	atabase version you are working with.

Category Definition Analogues

- The Toolbox now identifies all chemicals corresponding to the ECOSAR classification of *Phenols* which are listed in the selected databases within the *Data* module.
- 1167 analogues are identified. Along with the target they form a category (Phenols) which can be used for data gap filling.

Category Definition Read data for Analogues

- The Toolbox automatically requests the user to select the endpoint that should be retrieved.
- The user can either select the specific endpoint or by default choose to retrieve data on all endpoints (see below).

💽 Read data?		×
All endpoints Choose		
	OK	Cancel

- In this example, since only databases that contain information for Eco-toxicological endpoints are selected, both options give the same results.
- As the Toolbox must search the database, this may take some time.

Category Definition Summary information of Analogues

		01010 01 0 10100	► Report					
Categorize Category consistency Category consistency Define Define with metabolism Subcategorize Combine Clustering Category elements								
Documents	Filter endpoint tree	T	1 [target]	2	3	4	5	6
Document 1 A Control (Control (Contro) (Contro) (Control (Control (Control (Contro) (Con	Structure		Hack Dong		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Har	10 [*]	Sec.
	Ecotoxicological Information							
	- Aquatic Toxicity	AW SW						
	+ Accumulation	51/420						
	+ Adult Behaviour	1/1						
	+ Adult Mortality	3/4						
	+ Avoidance	Gather data			— п ×	4.65 mg/L		
		C, outlet data				1 mg/L		
						8.1 mg/L		
	- E Biochemistry	-	70014	1166		0.4 mg/L		
	+ Biomass	· · · · · · · · · · · · · · · · · · ·	r8914 points added	across 1100 cnemic	ais.	2.3 mg/L	4	
	+ Cell Number						1	
	+ Cell(s)					ENDEROS IL	-)	
	Coagulation of The Embry				ОК			
	+ Development	77/1343						
	Ecosystem Process	6/65						
Aquatic toxicity classification by ECOSAR	Enzyme(s)	66/1287				M: 4 mg/L		
Options O Selected	+ Feeding Behavior	36/135				M: 10 mg/L		
Select All Unselect All Invert	+ Fertility	3/5						
Acute aquatic toxicity classification by Verbaar (Modified)	+ Frond Number	17/57						
Acute aquatic toxicity MOA by OASIS		73/4345						
Aquatic toxicity classification by ECOSAR	- E Gonadal Histology	2/2						
US-EPA New Chemical Categories	+ Growth	335/2722				M: 0.25÷4 mg/L		
A Plausible	- E Growth Inhibition	45/131				M: 157 mg/L		
Groups of elements	+ Growth Rate	275/1006				M: 4.6 mg/L		
Hydrolysis half-life (Ka, pH 7)(Hydrowin)	+ Histology	54/443				-	-	
Hydrolysis half-life (Ka, pH 8)(Hydrowin)	+ Hormone(s)	43/657						
Hydrolysic half-life (Kh. nH 7)(Hydrowin)								

 Click **OK** on window that provides information for common number collected data across the initial group of chemicals.
 Note: The number of data points depends on the database version you are working with.

Category Definition Summary information of Analogues

QS	AR TOOL	BOX	► Input	► Profiling	DataCate	gory definition	01010 01 0 10100 Data Gap Filling	► Report				
	Ca	tegorize		Category consistency								
Define	Define with metabolis	m Subcategorize (Combine Cluste	ering Category elements		4.1	2	2		r	<i>c</i>	-
\odot	Doe	uments		Filter endpoint tree	Y	I [target]	2	3	4	2	0	1
Option f ⊿ Sui	Aquatic toxicity cl s Select All	unselect All	SAR 0 Selected Invert	Structure		H3C-CH H3C-CH3	HC COL	0.00	Hyper O	ND* #	Sec.	-922
	Acute aquatic toxicity c Acute aquatic toxicity N	lassification by Verl	haar (Modr	Structure info								
	Aquatic toxicity classifica	ition by ECOSAR		Parameters								
	JS-EPA New Chemical (ategories		Physical Chemical Prop Physical Chemical Prop	perties 473/5408			M: 2.13 µm	M: 1.95E+04 mg/l		M: 1.89 µm	
🔺 Pla	usible			🛨 Environmental Fate an	d Transport 390/3261			M: 0 %	M: 0.1 %		M: 0 %	
	Chemical elements Groups of elements			📮 Ecotoxicological Inform	mation							
	Hydrolysis half-life (Ka, p	H 7)(Hydrowin)		Aquatic Toxicity	AW 9W 961/46669		M: 10 mg/L	M: ≥1.5 mg/L	M: 0.00382 mg/L	M: =2.5 mg/L	M: >1E+03 mg/L	
	Hydrolysis half-life (Ka, p	H 8)(Hydrowin)		- 🕀 Sediment Toxicity	7/20		·					
	Hydrolysis half-life (Kb, p Hydrolysis half life (Kb, r	H 7)(Hydrowin)		- Terrestrial Toxicity	299/8701				M: 30 mg/kg bd	M: =71.8 mg/kg		M: 0.3÷5.6 mg/kg
	Hydrolysis half-life (pH 6	.5-7.4)		Human Health Hazard	s 551/14855			M: 1.09E+03 mg	M: 5 mg/kg bdw	M: =0.5 mg/kg b	M: not irritating	
	lonization at pH = 1			Profiling								
	Conization at pH = 4											
	Ionization at pH = 9											
	_ipinski Rule Oasis											
	DECD HPV Chemical Cat	egories	~									
<			>									

Chemical statistics presenting the number of chemicals and the available experimental data for them. This is statistics for the current row on data matrix.

Category Definition Summary information of Analogues

		Data points				_	пх
	► I - ► Profili	Datapoints	#	Value	Original value	Additional	Applicatic
Categorize	Catego	Ecotoxicological Information;Aquatic Toxicity;Mortality;24 h;Animalia (animals);Chordata (chordates);Actinopterygii (ray- finned fishes,spiny rayed fishes);Oncorhynchus tshawytscha;Undefined Endpoint	1	M: 10 mg/L (Mass concentration)	1E+04 µg/L (Mass concentration)	BAGS// CONC/ ONLY CONC TESTED//	1 Dosed x time(s) per study period
Documents Aquatic toxicity classification by ECOSAR	Filter endpoi	Ecotoxicological Information;Aquatic Toxicity;Mortality;24 h;Animalia (animals);Chordata (chordates);Actinopterygii (ray- finned fishes,spiny rayed fishes);Oncorhynchus kisutch;Undefined Endpoint	2	M: 10 mg/L (Mass concentration)	1E+04 µg/L (Mass concentration)	BAGS// CONC/ ONLY CONC TESTED// 4	1 Dosed x time(s) per study period
Options O Selected f Select All Unselect All Invert Suitable Acute aquatic toxicity classification by Verhaar (Modi Acute aquatic toxicity MOA by OASIS Aquatic toxicity classification by ECOSAR US-EPA New Chemical Categories Modi Selected	+ Structure + Structure + Paramete + Physical (Ecotoxicological Information;Aquatic Toxicity;Behavior;24 h;Animalia (animals);Chordata (chordates);Actinopterygii (ray- finned fishes,spiny rayed fishes);Ptychocheilus oregonensis;Undefined Endpoint	3	M: 10 mg/L (Mass concentration)	1E+04 µg/L (Mass concentration)	BAGS// CONC/ ONLY CONC TESTED//	1 Dosed x time(s) per study period
Plausible Chemical elements	 Environm Ecotoxico 	Ind					OK
Groups of elements Hydrolysis half-life (Ka, pH 7)(Hydrowin) Hydrolysis half-life (Ka, pH 8)(Hydrowin) Hydrolysis half-life (Kb, pH 7)(Hydrowin) Hydrolysis half-life (Kb, pH 8)(Hydrowin) Hydrolysis half-life (bH 6.5-7.4) Ionization at pH = 1 Ionization at pH = 4 Ionization at pH = 7.4 Ionization at pH = 9 Lipinski Rule Oasis OECD HPV Chemical Categories	- + Aqua	ic Toxicity AW SW 961/46669	0 mg/L N 0 mg/L N 0 mg/L N ppm N ppm N N N N N N	A: ≥ 1.5 mg/L M: M: A: > 1.5 mg/L M: A: > 2.2 mg/L M: A: 9.2 mg/L M: A: 9.2 mg/L M: A: > 9.2 mg/L M: A: ≥ 11.2 mg/L M:	0.00382 mg/L M: =2.5 mg/L N 0.00382 mg/L M: =2.5 mg/L N 0.00382 mg/L N 0.1 mg/L N 0.15 mg/L 0.319 mg/L 0.4 mg/L 1 mg/L N 0.1 mg/L N 0.1 mg/L N	1: >1E+03 mg/L 1: >1E+03 mg/L 1: >1E+03 mg/L 1: >1E+04 mg/L 1: 1E+04 mg/L	
		trial Toxicity 299/8701		M:	30 mg/kg bdM: =71.8 mg/kg		M: 0.3÷5.6 mg/kg
	+ Human H + Profiling	ealth Hazards 551/14855	N	/: 1.09E+03 mg <mark>.</mark> M:	5 mg/kg bdw M: =0.5 mg/kg b N	1: not irritating	

1. Double-click on the cell with measured data opens a table which provides detailed information for all experimental data of the focused chemical.

Recap

- You have identified a category of 1166 chemicals (*Phenols*) with the *Aquatic toxicity classification by ECOSAR* profiler for the target chemical 3-ethyl-5-methyl-4-methoxyphenol.
- The available experimental results for these 1166 analogues have been collected from the selected databases (*Aquatic OASIS, ECHA REACH, ECOTOX and Food TOX Hazard EFSA*).
- But before the user can proceed with the *Filling Data Gap* module, he/she should navigate through the endpoint tree and find the specific gap that will be filled.

Category Definition Navigation through the endpoint tree

- The user can navigate through the data tree by opening (or closing) the nodes of the tree.
- The data tree is extensive but logically constructed. It can be mastered with a practice.
- In this example, the "48 h LC50 Mortality for *Daphnia magna*" is the target endpoint.
- As already mentioned the row with the defined target endpoint is highlighted in yellow. (see next slide)

Category Definition

Navigation through the endpoint tree

- 🕀 Enzyme(s)

66/1287

Recap

- You have now retrieved the available experimental data on aquatic toxicity for 1166 chemicals classified as "phenols" by the "ECOSAR" profiler found in the databases Aquatic OASIS, ECHA REACH, ECOTOX and Food TOX Hazard EFSA.
- You have identified the target endpoint of "48 h LC50 Mortality for *Daphnia magna*".
- You are ready to fill in the data gap so click *Data Gap Filling* (see next few slides).

Outlook

- Background
- Keywords
- Objectives
- Specific Aims
- Trend analysis
- The exercise
- Workflow of the exercise
 - Chemical Input
 - Profiling
 - Data
 - Category definition
 - Data Gap Filling

Data Gap Filling

Overview

- *Data Gap Filling* module gives access to five different data gap filling tools:
 - Read-across
 - Trend analysis
 - (Q)SAR models
 - Standardized workflow (SW)
 - Automated workflow (AW)
- The most relevant data gap mechanism is used , taking into account the following considerations:
 - *Read-across* is the appropriate data-gap filling method for "qualitative" endpoints like skin sensitisation or mutagenicity for which a limited number of results are possible (e.g. positive, negative, equivocal). Furthermore read-across is recommended for "quantitative endpoints" (e.g., 96h-LC50 for fish) if only a low number of analogues with experimental results are identified.
 - *Trend analysis* is the appropriate data-gap filling method for "quantitative endpoints" (e.g., 96h-LC50 for fish) if a high number of analogues with experimental results are identified.
 - (Q)SAR models can be used to fill a data gap if no adequate analogues are found for a target chemical.
 - Automated and standardized workflows follow preliminary implemented logic. The AW is not affected by the user activities (proceeding or subsequent), while the SW stops at the each step of the workflows allowing the user to make different selection.
- In this example we will use trend analysis.

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Data Gap Filling Apply Trend analysis

1. Go to **Data Gap filling** module; 2. Click **Trend analysis**; 3. A pop-up window alerting you to possible data inconsistencies appears. Click **OK**; 4. A pop-up message informs about the number of chemicals (e.g. mixtures or UVCB substances) that will not be included in the Trend analysis prediction due to missing X descriptor value(s), which by default is Log*Kow*. Click **OK**.

Data Gap Filling

Interpreting Trend analysis

- The resulting plot outlines the log of the experimental LC50 results of all analogues (Y axis) according to a descriptor (X axis) with Log *Kow* being the default descriptor (see next slide).
- The **RED** points represent the predicted value for the target chemical.
- The **BLUE** points represent the experimental results available for the analogues used in the trend analysis.
- The square-shaped signs in the right side of the data gap filling window are the so-called "helpers". The helpers are notifying messages that provide different type of information related to the used data points in the prediction.
- Before accepting the estimated result for the target chemical, the trend analysis should be further refined by subcategorization (see the next slides).

Data Gap Filling Results of Trend analysis

Data Gap Filling Results of Trend analysis

Filter endpoint tree 💙 1 [target]	4 31	34 62	82 97	¹⁰² There are 1 endpoint values for 1 chemicals bigger than WS calculated by "	Water Solubility
Structure		No* O	····· ,	Mark data points Remove data points	
Ceriodaphnia du 11/49		GH	The	ere are 2 endpoint values for 2 lark data points	ity (fragments)"
Ceriodaphnia pulch 1/1					——————————————————————————————————————
			2	There are 1 endpoint values for 1 chemicals bigger than WS calculated by "Exp	Nater Solubility"
Daphnia carinata 1/1			→	Mark data points	
Daphnia cucullata 3/4					
Daphnia kingispina in i				The current gap filling state contains chemicals w	vith composition
EC50 9/14				M: 0.39 mg/L	
LC10 1/2	M: 14 mg/l M: 84 mg/l	M· -27.7 ma/l M· 0.396 ma/l	M:53 mg/l M:112 mg/l	M: 0.242 mg/l M: 2.6 mg/l M:	ta with qualifiers
LC90 1/2	ini tri ng/c	in contraction in the second s	in sisting e		E.
LOEC 1/1				There are chemicals which have different Substance type	than the target.
NOEC 17/19	M: 13 mg/L	. M: 0.078 mg/L		M: 1	Ð
NR-LETH 1/1				M: Thig/L	
Other Endpoint 1/3				M-12 mg/l	~
					V
Descriptors		Trend analysis prediction Predicted: 1.81 mg/l	ion for LC50, based on 62 values		Select / filter data
Prediction		Model equation: LC50 = 3.46 (±0.2	276) + 0.473 (±0.0872) * log Kow, log(1/mol/L)	Gap filling approach
					Descriptors / data
Adequacy 6			•		N. L. VOCAD
Cumulative frequency					Model/QSAR
Ê.		•		*8°-8° @	Calculation options
			• • •		Visual options
Statistics					Information
2					Miscellaneous

- 1. Click the helpers to see the information that they provide;
- Click on "Mark data points" to mark the chemicals meeting the criteria explained in the helper (e.g. mark the chemicals which have 2 endpoint values (LC50) bigger than the water solubility (WS) of the chemical);
- 3. Click **Remove data points** in order to eliminate the data points that have values bigger than WS of the chemical (click on all helpers). Once the data points are removed the helpers disappear.

Data Gap Filling Subcategorization

- Remember in the Toolbox, a category refers to a group of chemicals which have the same profiling result according to one of the profilers listed in the module *Profiling*.
- Subcategorization refers to the process of applying additional profilers to the previously defined category. The subcategorization identifies chemicals which have differing profiling results and eventually eliminating these chemicals from the final category.

Data Gap Filling Subcategorization

In this example, subcategorization allows for the elimination of analogues which are dissimilar to the target chemical with respect to:

- OASIS Mode of action (all except phenols and anilines)

The categorization based on mode of action identifies analogues having the same mode of action as the target which is in the group of phenols and anilines.

- <u>Chemical elements</u>

The profiler aimed to identify analogues consisting of same elements as those presented in the target chemical

Subcategorization is demonstrated in the next 2 slides.

Note: Expert judgement should always be used when removing chemicals.
Data Gap Filling

Subcategorization by Acute-aquatic toxicity MOA

Filter endpoint tree 💙	1 [target]	4	31	34	62	82	97	102	118	130	185	199	202	
	ÇH		¢.		9									
Structure	44 Q	n n n		No* D	Ó	······	<u>O</u>	0.0	Ó		<u>í</u>	···	0	
Subcategorization		-			Hyper I to		Hjor CH2	64 ⁻ 1	HOP		~~~~		*	U
Options A Profilers 1 Selected		Adjust options												
f Select All Unselect All Invert About Options		Target												
Ultimate bio	Phenols and	Anilines]				NA 0.20 //			NA 2 07 4			
Uncouplers							_	M: 0.39 mg/L	•		M: 2.07 mg/L			_
Endpoint Spe Acute aquation of forma by Marbary (b)				M. 277	Mr 0 205 //	M. 5.2 mm/l	M. 11.2	M: 0.242 //	M: 2.6	M. 1 21	Mr 2 54 mm/l	M-0.02 //	M-264 mm/l	14.2.07
Acute aquatic toxicity MOA by OASIS				. Wit = 27.7 Hig/C	M. 0.390 Hig/L	Will 5.5 mg/L	With L2 Hig/C	Wi: 0.242 Hig/L	Wit 2.0 mg/c	_ivit tist mg/c	WI: 3.34 Mg/L	_WL 9.95 Hig/E	Wi. 5.04 Hig/L	. 101: 2.57
Acute Oral Toxicity														
Bioaccumulation - metabolism alerts					M: 0.078 ma/L				M: 1 mg/L					
Bioaccumulation - metabolism half-lives								M: 1 mg/L						
Biodegradation fragments (BioWIN MITI) Carcinogenicity (genotox and nongenotox) alerty	Differ from	target by												
	At least	one category	[STOP							M: 1.2 mg/L				
	All cate	gories						M: 0.217+0.376						
f Select All Unselect All Invert		Analogues												
Do not account metabolism	(1) (N/A)													
Observed Mammalian metabolism	(1) Aldehydd	es												_
Observed Microbial metabolism	(3) Basesurf	ace narcotics												
Observed Rat In vivo metabolism	(54) Phenols	s and Anilines												>
Observed rat liver metabolism with quantitative c Observed Rat Liver S9 metabolism	(4) Reactive	unspecified												V
▲ Simulated				Trend a	nalysis prediction	for LC50, based on	61 values					1	elect / filter data	_
Autoxidation simulator				Model equation	ed: 1.81 mg/L 1: LC50 = 3.56 (±0.313)	+ 0.440 (±0.0990) * log	Kow, log(1/mol/L)					•		
Dissociation simulator	3 ed 8 (5)	3/61)											Subcotegorize	
Hydrolysis simulator (acidic)		Select different									•	Ma	rk chemicals by W	5
< >>		Remove selected						• • •	•		•			
Cumulative frequency						•						Mark che	micals by descripto	or value
								•					Mark outliers	
Residuals							• •	• •				Filter p	oints by test condi	tions
Statistics 9					•									
9			•				• • • • • • • • • • • • • • • • • • •					Ma	rk focused chemica	il i
4					2 2							M	ark focused points	
				<u> </u>					+					
1 Click Suba	ator	orizo												~
I. CIICK SUDC	aley	unze,												
2. Select Acu	ite ac	uatic t	oxicit	tv MOA	by O	ASIS								

3. Click **Remove selected** to eliminate the dissimilar chemicals.

Data Gap Filling

Subcategorization by Chemical elements

Data Gap Filling Results

QSAR TOOLBOX	(+) Input	r ⊓ L J ▶ Profiling	► Data ► Categor	y definition Dat	01010 01 0 10100 a Gap Filling	► Report									X 0 5 4 0
Gap Filling	Workflow														The OECD QSAR To for Grouping Chem into Categories
Documents	Filter endpoint tree		Y 301	336	393	513	542	545	566	624	648	658	The prediction is ad	ceptable accord	Developed by LMC, ing to the statistics logues > 10)
 Document 1 ✓ C [:: 1;Md: 0;P: 0] Search chemical △ □ [:: 1167;Md: 78914;P: 0] Phenols (/ ✓ □ [:: 63;Md: 30742;P: 0] Enter GF ✓ □ [:: 62;Md: 30697;P: 0] Filter ✓ □ [:: 62;Md: 30697;P: 0] Filter ✓ □ [:: 62;Md: 30697;P: 0] 	Structure		<u>_</u>	4,cQ	"~~~~®~	HE	~~~~ ^{0~}	nyc - Cen	нус	H ₅ C	1	67	en e		
[c: 25;Md: 13083;P		Daphnia longispir Daphnia magna	na 1/1 M:18 mg/L							(
		EC50	5/5		M: 0.0844 mg/L	N 100 //		N 5 60 /	N. 5 0		M: 4.8 (4+5.8) m		M: 0.104 (0.0874	M: =2.7 mg/L	1112 0
		LC50	24/72 M: 8.3 (5.8÷12.5). 2/2 M: 2.2 mg/L	M: 41.1 mg/L	M: 0.051 mg/L	M: 18.8 mg/L	.M: 4 mg/L	M: 5.68 mg/L	M: 5 mg/L	_M: 11.1 mg/L	M: 2.07 mg/L M: 1 mg/L	_M: 8.5 mg/L	M: 0.18 (0.15÷0	M: 0./1 mg/L	M: 11.2 mg/L
		NR-ZERO	1/2										M: 0.0485 mg/L		
		Undefined End	d 2/2 M: 200 mg/L 3/13 M: 28 (19+43) m.						M: 8.5 mg/L						
		Daphnia pulicaria	4/6 M: >109 mg/L			M: >99.5 mg/L			M: >94 mg/L						
		+ Lynceus brachyur	us 1/1 M: 47 mg/L												
		+ Sida crystallina	1/1 M: 6 ma/l												
	<	_													
2	Descriptors					Trend ar Predicte	alysis prediction f d: 3.8 ma/L	or LC50, based on	24 values					5	elect / filter data
Data Gap Filling Settings	Prediction	-				Model equation:	LC50 = 2.57 (±0.339)	+ 0.650 (±0.0983) * log	Kow, log(1/mol/L)					-	Subcategorize
Only endpoint relevant														Ma	rk chemicals by WS
At this position:	Adequacy													Markicha	micals by descriptor y
Select a cell with a rigid (bold) pa Automated workflows 0	Cumulative frequency	, 6												Wark che	Mark outliers
Standardized workflows 0	Residuals	5												Elhana	Mark outliers
	Statistics						•							Pilter p	oints by test condition
		25						•						Ivid	ik locused chemical
		LCS			•	•								M	ark focused points
						• •								Re	move marked data
		4		•	••	•								CI	ear existing marks
		•		•										G	ap filling approach
			•												Descriptors / data
			1.5 2		2.5	3	3.5 log	Kow	4	4.5	5	5	5	6	Accept prediction

Data Gap Filling Results

- All the chemicals remaining in the graph have a consistent profile relevant for aquatic toxicity (i.e. Substance type, Classification by ECOSAR, MOA by OASIS and Chemical elements) – they all are phenols
- By accepting the prediction the data gap is filled (see next screen shot).

Data Gap Filling

Accepting prediction result

2. Click **Yes** to confirm the prediction.

The prediction is accepted successfully and the system automatically returns you to the data matrix.

Outlook

- Background
- Keywords
- Objectives
- Specific Aims
- Trend analysis
- The exercise
- Workflow of the exercise
 - Chemical Input
 - Profiling
 - Data
 - Category definition
 - Data Gap Filling

• Export a prediction to IUCLID6

Export prediction to the IUCLID 6 Overview

- The OECD QSAR Toolbox allows the users to export predicted results (by means of the Filling Data Gap tools) to IUCLID 6.
- The way of exporting is connecting to an IUCLID 6 server (via WebServices) and assigning the predicted endpoint data to a selected substance.
- A wizard will guide the user through the different steps of exporting (see next screenshot).

QSAR TOOLEOX

Exporting the prediction to IUCLID 6

Case study

	Profiling Data	0101 01 01 01 01 01 01 01 01 01 01 01 01	Filling Freport							× • • • • •	
Data Import Export Delete Import Import		1								The OECD QSAR Too for Grouping Chemic into Categories Developed by LMC,	olbox cals Bulgaria
Occuments Documents C: 1Md: 0P: 1] Search chemical ■ [C: 1167/Md: 789149;* 1] Phenols (Aquatic 3) Cat ● [C: 63Md: 30697;P: 1] Filter 61(7A) ● [C: 63Md: 30697;P: 1] Filter 51(7A)	Filter endpoint tree Structure	₹	1 [target]		4	5 10° #	6 7	8 92~ ×	9		<u>11</u> ^
C [C 25,Md 13083]P; 1] Subcategorized: Chemical		phnia comuta 1/3 phnia dubia 1/3 phnia publella 1/1 phnia publella 1/1 phnia reticulata 2/5 us sphaericus 1/1 a carinata 2/3 a carinata 1/2 a longispina 1/1 a magna 1/1 0 1/1 00 2/2 0 24/33	2								
Options 4 Selected f Select All Unselect All Invert i Physical Chemical Properties Environmental Fate and Transport i Ecotoxicological Information i Aquatic Japan MoE i Aquatic Agan MoE i Ecotoxicological EFSA i Ecotoxicological EFSA	ELS 	0 2/2 0 6/277 0 6/277 0 6/277 0 7/2 C 3/3 EC 20/23 EL 1/1 LETH 1/1 LETH 1/1 LETH 1/1 LETH 1/1 LETH 1/1 splicx 10/77 a pulicaria 7/9 s brachyurus 1/1 stallina 1/1	T: 3.8 (0.841=17.2) mg/L		M: 14 mg/L M: 22.7 mg/L M: 22.7 mg/L						
25 Inventories	1. Go to 2. Click 3. Click	Data moo the cell co IUCLUD6	lule; ntaining th	ne pred	ction;						×

Pre	tions list /09/2019 14:31 [T]: 3.96 (0.872÷17.9) mg/L; Estimation for LC50 for No CAS number; Prediction approach=	Trend	Edit report nformation
<	Cancel	> Next >	2 Finish

0	Harmonised Template Selection	-		×
Pr	repare export fields for each prediction.			
1s	st: select prediction.			
2r	nd: select template to export that prediction to.			
3r	rd: review/edit the IUCLID6 fields.			
4t	th: repeat for all prediction(s).			
⊂ P	Predictions list			
/	20/09/2019 14:31 III: 3.96 (0.872÷17.9) mg/L: Estimation for LC50 for No CAS number. Prediction approach=Trend	analysis	Endpoi	nt=l
	<			>
	<			>
H	< Harmonized template selection OECD Template #43: Short-term toxicity to aquatic invertebrates			>
Н	Harmonized template selection OECD Template #43: Short-term toxicity to aquatic invertebrates OECD Template #41: Short-term toxicity to fish			>
	Aarmonized template selection OECD Template #43: Short-term toxicity to aquatic invertebrates OECD Template #41: Short-term toxicity to fish OECD Template #42: Long-term toxicity to fish			>
H C C C	Aarmonized template selection OECD Template #43: Short-term toxicity to aquatic invertebrates OECD Template #41: Short-term toxicity to fish OECD Template #42: Long-term toxicity to fish OECD Template #43: Short-term toxicity to aquatic invertebrates			>
	Aarmonized template selection OECD Template #43: Short-term toxicity to aquatic invertebrates OECD Template #41: Short-term toxicity to fish OECD Template #42: Long-term toxicity to fish OECD Template #43: Short-term toxicity to fish OECD Template #44: Long-term toxicity to aquatic invertebrates OECD Template #44: Long-term toxicity to aquatic invertebrates OECD Template #44: Long-term toxicity to aquatic invertebrates			~

- 3. Select the prediction;
- 4. Select a template to export the prediction;

Harmonised Template Selection	-		×
Prepare export fields for each prediction. 1st: select prediction. 2nd: select template to export that prediction to. 3rd: review/edit the IUCLID6 fields. 4th: repeat for all prediction(s).			
Predictions list			_
20/09/2019 14:31 [T]: 3.96 (0.872÷17.9) mg/L; Estimation for LC50 for No CAS number; Prediction approach=Trend	analysis,	Endpoin	t=l
<			>
Harmonized template selection			
OECD Template #43: Short-term toxicity to aquatic invertebrates			~
Review export data 5	E	5	
Cancel < Back Ne	ext >	Finis	sh

5. Review/edit the IUCLID6 fields;6. Click **Next;**

Connection	Settings	-		×
	Connect to an IUCLID6 server			
In order to u below and th	e a IUCLID server you should establish a network connection with it. Please provide the needed connect en click Next	ion par	ameters	
IUCLID Server: localhost	7	F	Port:	8
Username:	Password:			
SuperUser				
	9 Test connection options	0		
	Cancel & Park No		1	1
	7. Write IUCLID Server name; 8. Fill in the Port number; 9. Fill in the Username ; 10. Fill in the password : <u>root</u> ; 11. Click Next .	AL 2		211

Note:

In case you don't know your IUCLID account, please contact your administrator.

J Target Subs	tance Select	ion		_		×
CAS#	Name	Owner				
97-53-0	Test I	Laboratory of Mathematic				
			13			
AS				12	Se	earch
lame		Get All Subst	ances		56	

12. Click Get All Substances;

- 13. Select the chemical to which the prediction to be exported;
- 14. Click Finish.

Outlook

- Background
- Keywords
- Objectives
- Specific Aims
- Trend analysis
- The exercise
- Workflow of the exercise
 - Chemical Input
 - Profiling
 - Data
 - Category definition
 - Data Gap Filling
 - Export a prediction to IUCLID6
 - Report

Report Overview

- The report module can generate a report on any of predictions performed with the Toolbox.
- The report module contains predefined report templates, which can be customized.
- The report can then be printed or saved in different formats.

Report Generation report

QSAR TOOLEOX	► input ► Prof	iling > Data > Categ	ory definition Data Gap Fil	lling Freport							X O A O	olbox
B , B , B , B ,											for Grouping Chemi into Categories	cals
Prediction Di ta Matrix Category QMRF	SMI File SDF File CAS List D	ata Matrix									Developed by LMC,	Bulgaria
C 19460 C 25442 C 19460 C 19460 C 25442 C 2	(Aquatic toxicity classificar A) y WS - Water Solubility (frag ubcategorized: Chemical	ilter endpoint tree Structure	cornuta 1/3 i.cornuta 1/3 i.dubia 13/57 pulchella 1/1 reticulata 2/5 aericus 1/1 tata 2/3 ilata 3/4 ata 1/2 ispina 1/1 1/1 1/1 2/2 24/33 2/2 1/2 4/26 if 1/2 24/33 2/2 1/2 4/26 if 1/1 1/1 2/2 24/33 2/2 1/2 4/2 1/2	[target]		4 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5 N ¹		8	9		
		Streptocephalu	lus torvicornis 2/2									
²⁵ 1. 2.	Go to the Highlight	Report mod the predictio	lule; n result;	port								>
5.			eate a rep	port.								

Report Generation report

<u>Report wizard pages</u> appears, where the user could customize the report content and appearance. Some of the fields in the report are automatically populated by the system. 1. Click **Create report** to generate the report.

Report Generation

After clicking *Create report* button, *Generated report files* window appears. It contains three type of files:

- **1) Prediction report** a PDF file containing the prediction information related to the target.
- 2) Category report a PDF file containing information for the consistency of the final category (target plus used analogues)
- **3) Data matrix** a MS Excel file containing chemicals used for prediction along with their data for selected parameters, profiles and endpoint tree positions.

×

Report Generated report files

Prediction report

Prediction of LC50 for CCc1cc(O)cc(C)c1OC

1/6

QSAR Toolbox prediction for single chemical

Date: 3 Apr 2020 Author(s): Contact details:

	Target information	
Structural information	Numerical identifiers	Chemical names
CMTI EC.	CAS#: No CAS pumber	
CCc1cc(O)cc(C)c10C	Other: N/A	
Structure H ₃ C H ₃ C H ₃ C		

Prediction summary								
Predicted endpoint: LC50; Mortality; Daphnia magna; 48 h; No guideline specified								
Predicted value: 3.8 (from 0.841 to 17.2)								
Unit/scale: mg/L								
Data gap filling method: Trend analysis								
Summary: manually editable field								
Not provided by the user								

Prediction details (I) Predicted value: 4.62 log(1/mol/L), conf.range: (3.97; 5.28) at 95.0% Predicted endpoint (OECD Principle 1 - Defined endpoint): Ecotoxicological Information -> Aquatic Toxicity -> Mortality -> LC50 -> 48 h -> Animalia (animals) -> Arthropoda (arthropods) -> Branchiopoda (branchiopods) -> Daphnia magna Prediction plot: Trend analysis prediction for LC50, based on 24 values Predicted: 3.96 mg/L del equation: LC50 = 2.56 (±0.342) + 0.649 (±0.0983) * log Kow. log(1/mol/L) • In 65 C50 1.5 2.5 3.5 4.5 5.5 4 5 log Kow Calculation approach (OECD principle 2 - Unambiguous algorithm): Linear approximation Model equation: LC50 = 2.56 (±0.342) + 0.649 (±0.0983) * log Kow, log(1/mol/L) Active descriptor: log Kow (calculated) Data usage: Arithmetic mean (average) value* Statistics of the prediction model: N = 24; count of data points R2 = 0.895; coefficient of detemination R2adj = 0.890; adjusted coefficient of detemination SSR = 2.12; sum of squared residuals s = 0.297; sample standard deviation of residuals F = 187; Fisher function *When multiple values are available for the same chemical, their arithmetic mean (average) value is taken in prediction calculations

Prediction of LC50 for CCc1cc(O)cc(C)c1OC

2/6

Report Generated report files

Category report

Data matrix report

						Home Insert Page Layout	Formula	is Data	Review View	
		QSAR Toolb	ox report for category			Cut Calibri	- 10 -	A =	= = »·· 🗗 Wap	let
				-		La Copy	m - 8	· A · =		h Cert
						Grant Painter				
					-		m		Algenent	
						AL TA				
1 Cata						A	В	C D	E .	
1. Categ	jory definition				1	Substance identity			anger enternean	
1.1. Ca	teaorv definiti	on							~	
Catao				manually editable field					-	
Categ	ory name			manually catable new		Structure		HJC	- CP - 0%	
No	t provided by the	user							H _R CO	н
Cover	ed (target) end	noint(s)			1					
	cotovicological Ir	formation/Aquatic T	ovicity I C50 Daphaia magaz	Pranchionoda (branchionoda)	4	CAS number		Invalid	d CAS number: 0-00-0	
- 6		Inormation/Aquatic 1	oxicity: LC50, Daprinia magna	, Branchiopoua (branchiopous),	5	Chemical name				
Art	hropoda (arthrop	oods), Animalia (anin	nals), Mortality, Duration=48	1	6	Other identifier			1(0)(0)00	
Catoo	ony hypothoeie			manually editable field	-	SMILES			100000000000	
Catey	ory rispouresis			,	5	Parameters	unit			
No	t provided by the	user			1)				
12.0-					1	Profilers				
1.2. Ca	tegory membe	ers			1	Profiles used for grouping/subcategoria Acustic tracicity classification by ECOS	ation 10		Phannie	
Inform	nation of cateo	ory members				Appart when care and a constant of coord	-	D	screte chemical:	
Та	ble of category n	nembers			1	Substance type (subcategorization)		Mono co	nstituent (predefined); Organic	N
#	CAS	Name	SMILES	Structure	1	Acute aquatic toxicity MOA by OASIS		Phe	nols and Anilines	
1	No CAS number		CCc1cc(0)cc(C)c10C	04	- ,	Chemical elements (subcategorization)		Gro	up 14 - Carbon C;	
1	NO CAS INTIDE		cccrcc(o)cc(c)croc	Un I	1	7		- Cru	wh to . exilience	
					1	Measured and predicted data				
					1	Data used for prediction				
				H ₃ C CHa					species, duration, test	
				city		environment	endpoint	volue uni	type, type of method,	volue
									assay, strain, test	
				H3C-	2	•		*	· goodine, year, reperen	
2	106-44-5	Cresol	Cc1ccc(0)cc1	OH	1					
	1									
				H ₃ C		Aquatic Toxicity	LC50			1.4
2	04-26-9	Bubdnarahon	CCCCOC(=0)c1ccc(0)cc1	~	-					
3	94-20-0	Butyiparaberi	0,000							
				H3C						
				6	2	1				
4		2.3-xylenol	Cc1cccc(0)c1C	^	1					
	526-75-0									
	526-75-0	2,0 Agreener	derette(o)ero	\square						
	526-75-0	L/S Aftenor	oured(o)ero	$\left[\right]$		A N Churt OT				
	526-75-0	Lio Afrener				and churt of				
	526-75-0			НзсОН		() Y Churt (
	526-75-0			Н3С ОН		() W Churt 201				
	526-75-0			H ₃ C OH		()) Churt (0)				
5	135-19-3	135-19-3	0c1ccc2cccc2c1	H ₃ C OH	-	() V () () ()				
5	526-75-0 135-19-3	135-19-3	0c1ccc2cccc2c1	H ₃ C CH		an but 677				
5	135-19-3	135-19-3	0c1ccc2cccc2c1			A & U Churt (D)				
5	526-75-0	135-19-3	0c1ccc2cccc2c1	Настон		F & U Churt BY				

💽 🖬 🤊 - (* -) =			Data matrix_3_8_1716_39_11.alsx -	Microsoft Excel			– ø ×
Home Insert Page Layout Forms	ilas Data Review View						🤬 _
Lot Calbri 10 Paste √ Format Painter B Z	A`A` = = ⇒. ∰Was a <u>A</u> = = ≥ # # ∭Mas	e & Center of S · % · 16 1 fo	Mormal Bac andbonal Format matting* as Table*	Good Neutra lanatory Input Linked	Cell Note Insert	Delete Format 2 Clear * AutoSum * Art Delete Format 2 Clear * Filter* Self & Fin 2 Clear * Filter* Self	a .
Clipboard G Font	G Alignment	9 Number 9		Styles		Cells Editing	
A1 • 🔿 🎉							
A B	C D E	F G H	I J K	L M N	O P Q	R S T	U V W
1	Target chemical	Analogue #1	Analogue #2	Analogue #3	Analogue #4	Analogue #5	Analogue #6
2 Substance identity							
Structure	Hys Hys CHy	нус	HE OO	нус. Он	NO 0	Hyc	нуб ОТ
3 6 CAS number	Invalid CAS number: 0.00.0	105.44-5	185,10,8	128,02.0	92.60.3	90.05.1	98.54.4
5 Chemical name		Cresol	2Naphthol	4-Ethylphenol	biphenyl-4-ol	gualacol	Butylphen
5 Other identifier							
7 SMILES	CCc1cc(O)cc(C)c1OC	Cclccc(O)ccl	Oc1ccc2ccc2c1	CCc1ccc[0]cc1	Ocloce(ccl)-cloccccl	00c1ccccc10	CC(C)(C)cIccc(O)cc1
9 Parameters unit							
10							
1 Profilers							
Profiles used for grouping/subcategorization Anuatic training of grouping/subcategorization	Dhannle	Shanole	Phanole	Obannie	Dhannie	Dispole	Phanole
Address restored and the construction of construction	Discrete chemical;	Discrete chemical;	Discrete chemical;	Discrete chemical;	Discrete chemical;	Discrete chemical;	Discrete chemical;
Substance type (subcategorization)	Mono constituent (predefined);	Mono constituent (predefined);	Mono constituent (predefined);	Mono constituent (predefined);	Mono constituent (predefined);	Mono constituent (predefined);	Mono constituent (predef
5 Acute aquatic toxicity MOA by OASIS	Phenols and Anilines	Phenois and Anilines	Phenols and Anilines	Phenols and Anilines	Phenois and Anilines	Phenois and Anilines	Phenols and Aniline
6 Chemical elements (subcategorization)	Group 14 - Carbon C; Group 16 - Oxygen O	Group 14 - Carbon C; Group 16 - Dxygen D	Group 14 - Carbon C; Group 16 - Oxygen O	Group 14 - Carbon C; Group 16 - Oxygen O	Group 14 - Carbon C; Group 16 - Oxygen O	Group 14 - Carbon C; Group 16 - Oxygen O	Group 14 - Carbon C Group 16 - Oxygen C
17							
18 Measured and predicted data 19 Data used for prediction							
environment endpoint	value unit species, duration, test hpc, hpc of method, assay, strain, test suideline, year, referen	value unit species, duration, test type, type of method, ossay, strain, test guideline, year, referen	value unit species, duration, test type, type of method, assay, strair, test unit guidekne, year, referen u	value unit species, duration, test type, type of method, assay, strain, test guidekne, year, refereng	value unit species, duration, test hype, hype of method, assay, strain, test yuideline, year, referen	value unit species, duration, test hype, type of method, ossay, strain, test w guideline, year, referen w	value unit species, dua type, type o assay, str y guideline, yec
Aquatic Toxicity LCS0		Daphnia magna 48 h Buill Environ Contant Toxical 23/31:849-556 Penhinutta III, A.S. 1.4 mgl. Bradsharu, L.Forte, an Activity and Activity of Aquati Biota of a Cali Conversion Effuent an UK Mari Commendent	Baphnia magna Bh Trans. Am, Fish Soci.131(1):74-85 Millemann, R.R., Will, Birge, J.A. Bick, R.M. Cashman, K.L. Dwinis, P.J. Franco, J.M. Gildings, J.F. McCarthy, and AJ. Comparative Acate Transition in Advanta	9.93 mg/L 9.94 Peter C von der Ohen, son 9.95 mg/L 9.95 Peter C von der Ohe, 9.96 Peter C von der Ohe, 9.96 Peter C von der Ohe, 9.96 Peter C von der Ohen, 9.96 Peter C von der Ohen,	Daphnia magna 48 h 2005 Chen Ret. Toicol, J. 8 (3), 554-555 3.64 mgL Pater C. von der Ohe, Barthaburger, Mathins Lieber, and Gent Schülmann Structural Alerti-A New Chentination Model	Daphnia magna 88 h Oken-3ioli Interact(34):255-531 Kopeman,HL, akk 25.9 mg/L Carlson, and R. Caple Carlson, and R. Caple Carlson, and R. Caple Carlson, and Caple Car	423 mg/L 423 mg/L 423 mg/L Bett, Io/A Mathias L GerritSch Structural A
		Daphnia magna 48 h	48 h			48 h	

Outlook

- Background
- Keywords
- Objectives
- Specific Aims
- Trend analysis
- The exercise
- Workflow of the exercise
- Save the prediction result

Saving the prediction result

- This functionality allow storing/restoring the current state of Toolbox documents including loaded chemicals, experimental data, profiles, predictions etc., on the same computer. The functionality is implemented based on saving the sequence of actions that led to the current state of the Toolbox document and later executing these actions in the same sequence in order to get the same result(s).
- Saving/Loading the file with TB prediction is shown on next screenshots

Saving the prediction result

QSAR TOOLEOX

Open file

Congratulations!

- You have now been introduced to the work flow of the Toolbox and completed the tutorial on data gap filling by trend analysis and exported the prediction to IUCLID 6.
- You have been introduced to the six modules of the Toolbox, the basic functionalities within each module and the rationale behind each module.
- Remember, proficiency comes with practice!