QSAR TOOLBOX

The OECD QSAR Toolbox for Grouping Chemicals into Categories

OECD QSAR Toolbox v.4.4.1

Step-by-step example for predicting Ames mutagenicity by making use of read-across

- Background
- Keywords
- Objectives
- Specific Aims
- Read-across
- The exercise
- Workflow of the exercise
- Save the prediction

Background

- This is a step-by-step presentation designed to take you through the workflow of the Toolbox in a data-gap filling exercise using read-across based on molecular similarity with data pruning.
- If you are a novice user of the Toolbox you may wish to review the "Getting Started" document [click <u>here</u>] as well as go through tutorials 1 and 3.

- Background
- Keywords
- Objectives
- Specific Aims
- Read-across
- The exercise
- Workflow of the exercise
- Save the prediction

Keywords

TARGET CHEMICAL - chemical of interest

MODULE – a Toolbox module is a section dedicated to specific actions and options

WORKFLOW – the use, in combination, of the different modules (e.g. prediction workflow: from input to report)

PROFILER - algorithm (rule set) for the identification of specific features of the chemicals. Several types of profilers are available, such as structural (e.g. Organic functional groups), mechanistic (e.g. Protein binding by OECD) and endpoint-specific (e.g. in vitro in vitro mutagenicity (Ames test) alerts by ISS) profilers.

ALERT - the profilers consist of sets of rules or alerts. Each of the rules consists of a set of queries. The queries could be related to the chemical structure, physicochemical properties, experimental data, comparison with the target or list with substances and external queries from other predefined profilers (reference queries).

CATEGORY – "group" of substances sharing same characteristics (e.g. the same functional groups or mode of action). In a typical Toolbox workflow, it consists of the target chemical and its analogues gathered according to the selected profilers

ENDPOINT TREE – Endpoints are structured in a branched scheme, from a broader level (Phys-Chem properties, Environmental Fate and transport, Ecotoxicology, Human health hazard) to a more detailed one (e.g. EC3 in LLNA test under Human health hazard-Skin sensitization)

DATA MATRIX – Table reporting the chemical(s) and data (experimental results, profilers outcomes, predictions). Each chemical is in a different column and each data in a different row

- Background
- Keywords
- Objectives
- Specific Aims
- Read-across
- The exercise
- Workflow of the exercise
- Save the prediction

Objectives

- This presentation demonstrates a number of functionalities of the Toolbox:
 - Entering a target chemical by SMILES notation and Profiling;
 - Identifying analogues to a target chemical by molecular similarity;
 - Retrieving experimental results available for the identified analogues;
 - Filling data gaps by read-across.

- Background
- Keywords
- Objectives
- Specific Aims
- Read-across
- The exercise
- Workflow of the exercise
- Save the prediction

Specific Aims

- To review the workflow of the Toolbox.
- To reacquaint the user with the six modules of the Toolbox.
- To reacquaint the user with the basic functionalities within each module.
- To introduce the user to new functionalities of selected modules.
- To explain the rationale behind each step of the exercise.

- Background
- Keywords
- Objectives
- Specific Aims
- Read-across
- The exercise
- Workflow of the exercise
- Save the prediction

Read-across & the Analogue Approach

- Read-across is a method that can be used to fill a data gap of a chemical using an analogue approach.
- In the analogue approach, experimental endpoint information for a single or small number of tested chemicals is used to predict the same endpoint for an untested chemical that is considered to be "similar" (i.e., within the same category).

Analogous Chemicals

- Previously you have learned that analogous sets of chemicals are often selected based on the hypothesis that the toxicological effects of each member of the set will show a common behaviour.
- For this reason, the mechanistic profilers have been shown to be of great value in using for category definition.
- However, there are cases where the mechanistic profilers and grouping methods are inadequate and one is forced to rely on molecular similarity to form a category.
- The Toolbox allows one to develop a category by using either mechanistic knowledge (e.g. for DNA binding) or structural similarity.
- Since there is no preferred way of identifying structural similarity, the user is guided to use DNA binding as a first option.

- Background
- Keywords
- Objectives
- Specific Aims
- Read-across
- The exercise
- Workflow of the exercise
- Save the prediction

Exercise

- In this exercise we will predict the Ames mutagenicity potential for an untested compound - *n-hexanal* [SMILES: CCCCCC=O], which is the "target" chemical.
- This prediction will be accomplished by collecting a small set of test data for chemicals considered to be in the same category as the target molecule.
- The category will be defined by empirical similarity, with respect to the "Organic functional groups" profiler.
- The prediction itself will be made by "read-across" analysis.

On Mutagenesis

- Mutations within a gene are generally base-substitutions or small deletions/insertions (i.e., frame shifts).
- Such alteration are generally called point mutations.
- The Ames scheme based on strains of *Salmonella typhimurium* provides the corresponding experimental data.

On Mutagenesis

- The Ames mutagenicity assay (see OECD guideline 471) is designed to assess the ability of a chemical to cause point mutations in the DNA of the bacterium *Salmonella typhimurium*.
- The Ames test includes a number of strains (TA1537, TA1535, TA100, TA98 and TA97) that have been engineered to detect differing classes of mutagenic chemicals.
- The basic test only detects direct acting mutagens (i.e., those chemicals able to interact with DNA without the need for metabolic activation).

on Metabolic Activation

- The inclusion of a S9 mix of rodent liver enzymes is designed to assess those chemicals requiring metabolic activation in order to be mutagenic.
- Typically, chemicals are assayed both without S9 and with S9 and the results are reported in a binary fashion.
- A positive result in any of the bacterial strains with or without S9 indicates mutagenic potential.
- In the current example both cases with and without S9 will be exemplified.

- Background
- Keywords
- Objectives
- Specific Aims
- Read-across
- The exercise
- Workflow of the exercise
- Save the prediction

Workflow

- The Toolbox has six modules which are used in a sequential workflow:
 - Input
 - Profiling
 - Data
 - Category Definition
 - Data Gap Filling
 - Report

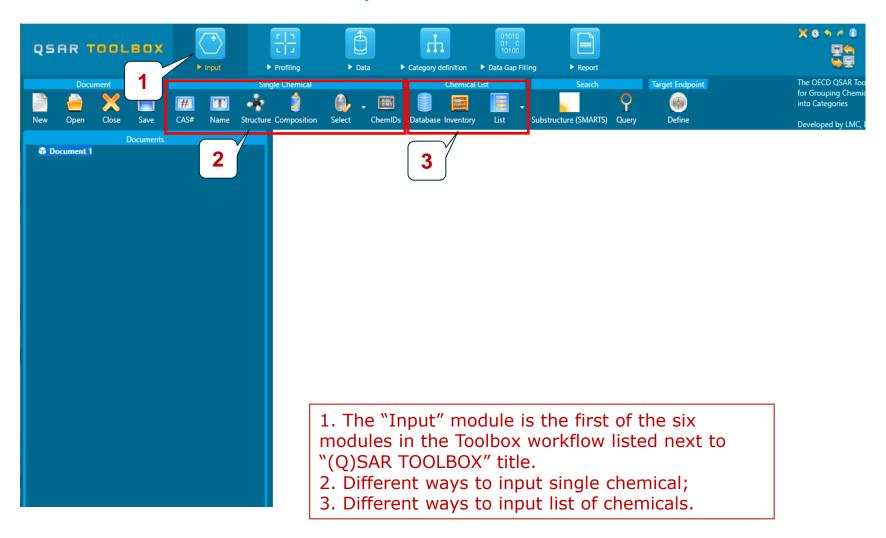
- Background
- Keywords
- Objectives
- Specific Aims
- Read-across
- The exercise
- Workflow of the exercise
 - Input

Input Overview

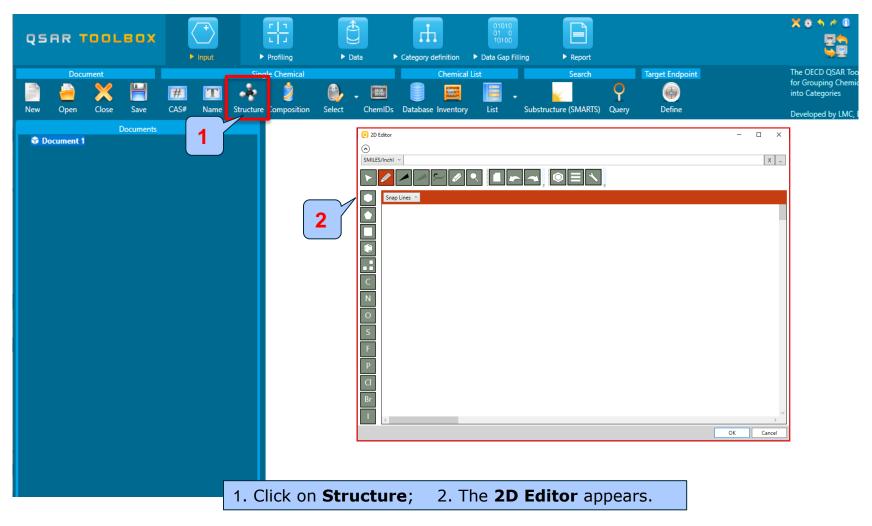
- This module provides the user with several means of entering the chemical of interest (i.e. the target chemical).
- Since all subsequent functions are based on chemical structure, the goal here is to make sure the molecular structure assigned to the target chemical is the correct one.

Input Input chemical(s)

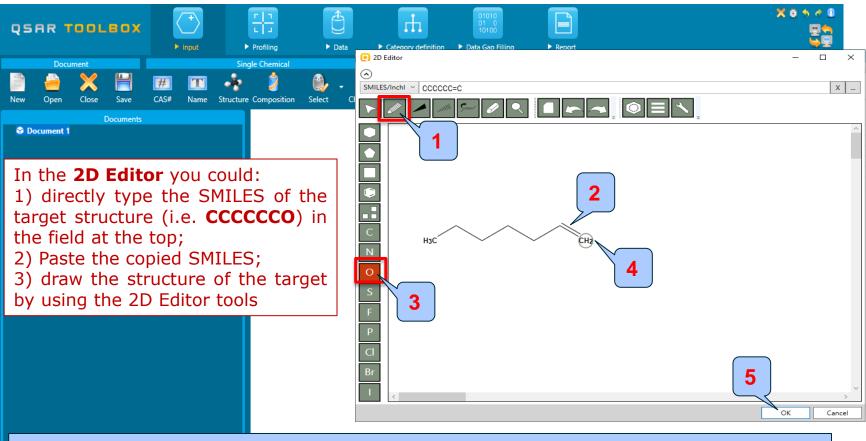
Alternative ways to input chemical(s):


A.Single target chemical

- Chemical Name
- Chemical Abstract Services (CAS) number (#)
- SMILES (simplified molecular information line entry system) notation/InChi
- Drawing chemical structure
- Select from User List/Inventory/Databases

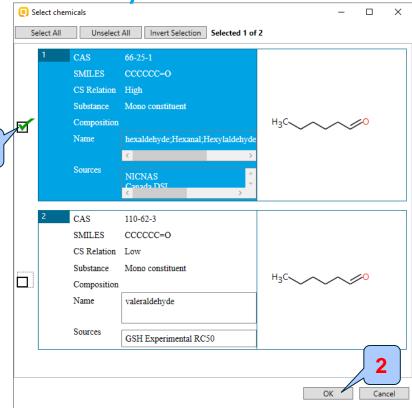

B.Group of chemicals

- User List/Inventory
- Specialized Databases


Input Input Screen

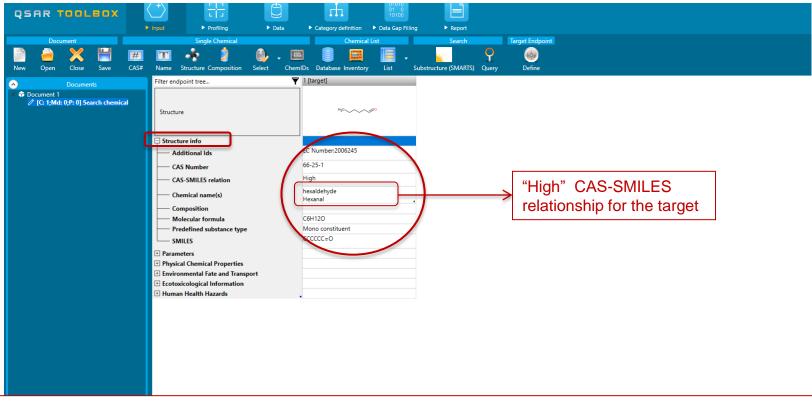
Input Input target chemical by drawing

Input Input target chemical by drawing


1. Click on the **Drawing tool** and draw a linear chain with seven carbon atoms (while you are drawing, the SMILES of the structure will appear above); 2. Click over the last bond that will convert it to double bond; 3. Select the oxygen symbol (**O**); 4. Click on the terminal carbon. This will convert it to oxygen; 5. Confirm by **OK**.

Input Input target chemical by SMILES

1


The Toolbox now searches the Toolbox databases and inventories for the presence of a chemical with structure related to the current SMILES notation. It is depicted as a 2D image.

Two chemicals are found. By default they are unselected. Select the chemical with high CAS-SMILES relationship (CS Relation).

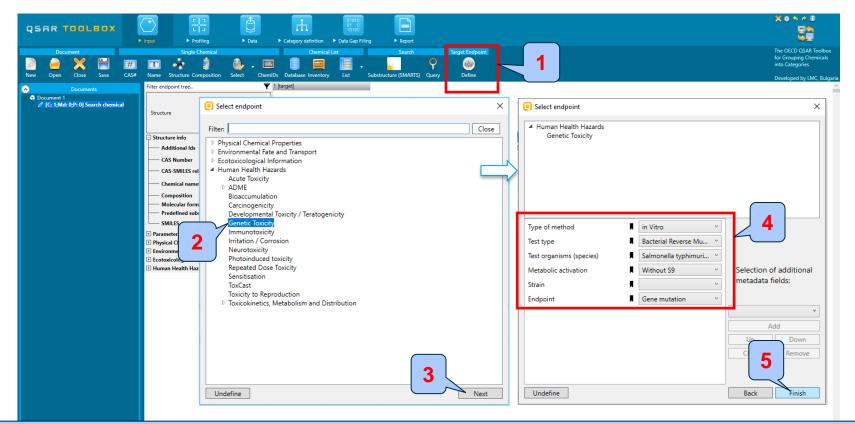
1. **Select** the first chemical by clicking on the box in front it; 2. **Click** OK.

Input Target chemical identity

- Expand "Structure info" field to display chemical identification information.
- It is important to remember that the workflow is based on the structure coded in SMILES.
- See the next slide for more details on the CAS-SMILES relationship.

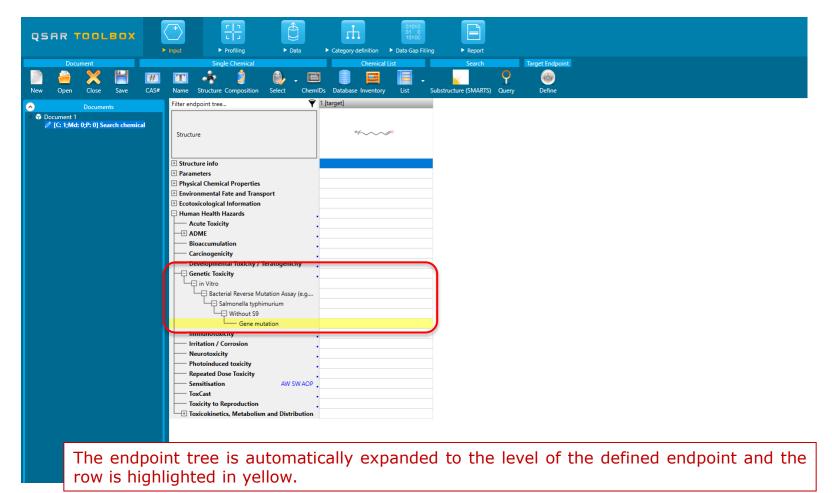
Chemical Input Target chemical identity

The code indicates the reliability of the chemical identifier:


- **High:** This reliability corresponds to high reliability of CAS-SMILES relation. This label is assigned if the chemical belongs to at least one high quality data source (database or inventory)
- **Moderate:** This reliability corresponds to moderate reliability of CAS-SMILES relation. The moderate label is assigned if the chemical belongs to three or more sources with unknown quality (marked with "Distribute to QA").
- Low: This reliability corresponds to poor reliability of CAS-SMILES relation. This label is assigned if the chemical belongs to less than three, but at least one source with unknown quality ("Distribute to QA").

Input

Define target endpoint - overview


- The Define target endpoint functionality allows for entering the endpoint of interest e.g., EC3, LC50, gene mutation etc.
- The relevant profiles and databases become highlighted in colour once the targeted endpoint is preliminary defined by this functionality;
- Calculation of alert performance (AP) is only possible if the target endpoint is preliminary defined;
- There are different ways for defining the target endpoint (via the button from the Input module or by right click from the endpoint tree). For more details press F1 button in order to see the online help.

Input Define target endpoint

Click on the Define button; 2. Select "Genetic Toxicity" from Human health hazard level; 3. Click on Next;
 Specify the endpoint using the drop-down menus as follows: For Endpoint select Gene mutation, for Type of method – in Vitro; for Test type - Bacterial Reverse Mutation Assay (e.g. Ames Test), for Test organism (species) - Salmonella typhimurium, for Metabolic activation – Without S9; 5. Finally click on Finish.

Input Define target endpoint

Input Input results

- 1) In module *Input*, you have entered the target chemical. The target has high CAS-SMILES relationship.
- 2) The target endpoint (gene mutation) is defined using "Define target endpoint" functionality.
- 3) Based on the defined target endpoint the relevant profiles and databases become highlighted (see next slides).

- Background
- Keywords
- Objectives
- Specific Aims
- Read-across
- The exercise
- Workflow of the exercise
 - Input
 - Profiling

Profiling Overview

- "Profilers" are a collection of empirical and mechanism knowledge which could be used to analyse the structural properties of chemicals.
- The profilers identify the affiliation of the target chemical(s) to preliminary defined categories (functional groups/alerts).
- "Profiling" refers to the electronic process of retrieving relevant information on the target compound, other than environmental fate, ecotoxicity and toxicity data, which are stored in the Toolbox.
- The outcome of the profiling determines the most appropriate way to search for analogues, but they are also useful for preliminary screening or prioritization of substances. The "profilers" are not (Q)SARs, i.e. they are not prediction models themselves.
- The "Profiling" module contains also observed and simulated metabolisms/transformations, which could be used in combination with the profiling schemes.

Profiling Overview

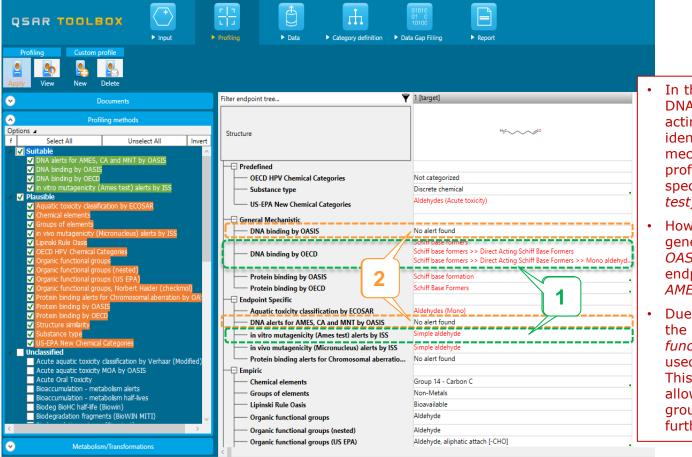
- To help the user to choose the most appropriate profiling methods, the profilers are highlighted in different colors:
 - **in green** the most suitable for the target endpoint profilers. These are the profilers developed using data/knowledge associated with the mechanisms conditioning the target endpoint (e.g. Protein binding alerts for skin sensitization by OASIS);
 - in orange are indicated the plausible profilers. These are the profilers for which data/knowledge used for building them is known to be somehow related to the target endpoint, i.e. these which are not directly related to the target endpoint, but still could be used (e.g. Organic functional groups),
 - unclassified these are profilers for which there is no evidence for the relation data/knowledge used for building them and the target endpoint.
- The profilers identifying structural groups are marked as plausible, while the profilers based on mechanistic knowledge are highlighted in green (see next few slides).

Profiling

Profiling the target chemical - background

- The following profiling methods are relevant to the defined target endpoint (Ames mutagenicity):
 - Suitable profilers
 - DNA alerts for AMES, CA and MNT by OASIS
 - DNA binding by OASIS
 - DNA binding by OECD
 - in vitro mutagenicity (Ames test) alerts by ISS
 - Plausible profilers
 - Aquatic toxicity classification by ECOSAR*
 - Organic function groups

-


^{*}Aquatic toxicity classification by ECOSAR is a rule-based profiler, which very well describe the functional groups present in the target molecules (It is a method for identifying chemical classes). Hence this method is one of the most robust of the mechanistic grouping method and it is often the method of choice for different hazards endpoints (e.g. acute aquatic toxicity and skin sensitization).

Profiling Profiling the target chemical - background

	QSAR TOOLEOX Input Custom profile Q pply View New Delete	ing 1 Category definition		
\odot	Documents	Filter endpoint tree Y	1 [target]	
f	stions 22 Selected 22 Selected Invert	Structure	H5~~~~\$0	
	✓ DNA alerts for AMES, CA and MNT by OASIS ✓ DNA binding by OASIS	Physical Chemical Properties		
2 (✓ DNA binding by ORSIS	Environmental Fate and Transport		
	v in vitro mutagenicity (Ames test) alerts by ISS	Ecotoxicological Information		
4	Plausible Aquatic toxicity classification by ECOSAR	🗄 Human Health Hazards	· · · · · · · · · · · · · · · · · · ·	
	Chemical elements	Profiling		
	Groups of elements	- Predefined		1
	in vivo mutagenicity (Micronucleus) alerts by ISS	OECD HPV Chemical Categories	Not categorized	/ 4
	✓ Lipinski Rule Oasis ✓ OECD HPV Chemical Categories	Substance type	Discrete chemical	\sim
	✓ Organic functional groups	US-EPA New Chemical Categories	Aldehydes (Acute toxicity)	
	Organic functional groups (nested)	General Mechanistic	No wheek Revend	
	 Organic functional groups (US EPA) Organic functional groups, Norbert Haider (checkmol) 	DNA binding by OASIS	No alert found Schiff base formers	
	 Protein binding alerts for Chromosomal aberration by OASIS Protein binding by OASIS 	DNA binding by OECD	Schiff base formers >> Direct Acting Schiff Base Formers Schiff base formers >> Direct Acting Schiff Base Formers >> Mono aldehydes	
	✓ Protein binding by OECD ✓ Structure similarity	Protein binding by OASIS	Schiff base formation	
	✓ Substance type	Protein binding by OECD	Schiff Base Formers	
	US-EPA New Chemical Categories	Endpoint Specific	· · · · ·	
4	Vinclassified	Aquatic toxicity classification by ECOS	Aldehydes (Mono)	
	Acute aquatic toxicity classification by Verhaar (Modified) Acute aquatic toxicity MOA by OASIS	DNA alerts for AMES, CA and MNT by	No alert found	
	Acute Oral Toxicity	in vitro mutagenicity (Ames test) alert	Simple aldehyde	
	Bioaccumulation - metabolism alerts	in vivo mutagenicity (Micronucleus) al	Simple aldehyde	
	Rinarcumulation - metabolism halt-lives	Protein binding alerts for Chromosom		
\sim	Metabolism/Transformations	Protein binding alerts for skin sensitiz	Skin sensitization Category 1B	
		Protein binding alerts for skin sensitiz	Schiff base formation	
		Chemical elements	Group 14 - Carbon C	
		Groups of elements	Non-Metals	
		Lipinski Rule Oasis	Bioavailable	
		Organic functional groups	Aldehyde	
		Organic functional groups (nested)	Aldehyde	
		Organic functional groups (US EPA)	Aldehyde, aliphatic attach [-CHO]	
		Organic functional groups, Norbert Ha	Aldehyde .	

1. Go *Profiling* module 2. Check all highlighted (in green and in orange) profilers; 3. Click **Apply**; 4. The results appear on data matrix

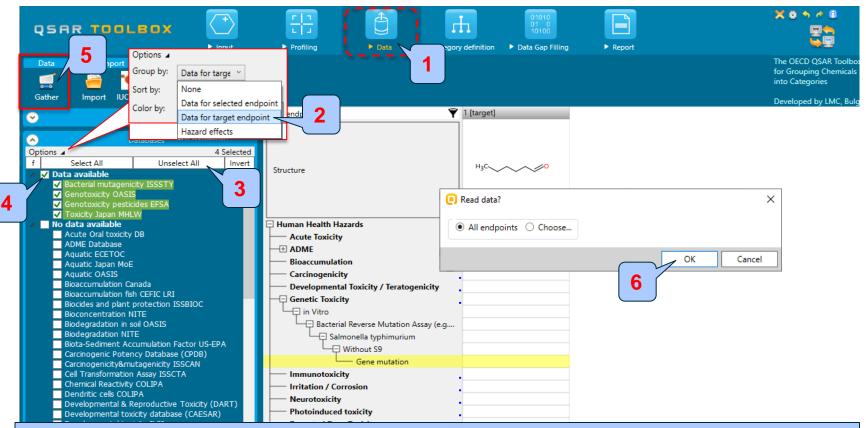
Profiling Profiles of n-hexanal

- In this case an alert associated with DNA binding (i.e. Mono aldehydes acting as Schiff base formers) is identified by the general mechanistic DNA binding by OECD profiler as well as by the endpoint specific *in vitro mutagenicity (Ames test) alerts by ISS* (1)
- However, no alerts are found by the general mechanistic *DNA binding by OASIS* profile as well as by the endpoint specific *DNA alerts for AMES, CA and MNT by OASIS* (2)
- Due to the contradictory results, in the current example, the Organic functional groups profiler will be used for categorization purposes. This structure-based profiler will allow as to form broader primary group of analogues that could be further reduced.

Profiling Mechanistic justification of profiling results

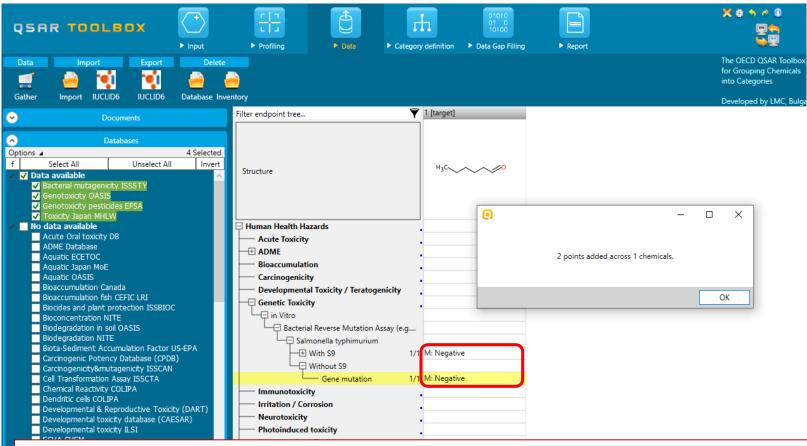
	01010		
QSRR 🕘 Profiling results — 🗆 🗙		Explanation for: DNA binding by OECD -> Schiff base	e formers >> Direct Acting Schiff Base Formers >> Mono aldehydes — 🔲 🗙
▲ Schiff base formers	► Data Gap Filling ► Report	Categories	Definition Properties Training Set Literature MetaInfo Table Custom
Profiling Direct Acting Schiff Base Formers Mono aldehydes	4	Filter: iff base formers Chemicals Activated by P450 to Glyoxal Ethanolamines (including morpholine)	Structural alert: Mono-aldehydes
Apply Vie	▼ 1 [target]	Ethylenediamines (including piperazine) Chemicals Activated by P450 to Mono-aldehydes Benzylamines-Schiff base N-methylol derivates	R ↓H
Options 4	HyG~~~~~¢0	Thiazoles Direct Acting Schiff Base Formers Alpha-beta-dicarbonyl Mono aldehydes	R = sp3 carbon, hydrogen -
f S V Suitabl		I Carbenium Ion Formation	Mechanism
		Aliphatic N-Nitro Allyl benzenes Alpha halo ethers (including alpha halo thioether ~	Mono aldehydes undergo Schiff base formation (Garcia et al 2009, Hecht et al 2001).
♥ DNA ♥ in vil ≥ ♥ Plausib	Not categorized Discrete chemical Aldehydes (Acute toxicity)	C Explanation	
V Aqu V Chei V Grot		о≖сн) k
	No alert found Schiff base formers	сн ₂ сн ₃	R NH ₂ R = DNA chain
V OEC Details Close	Schiff base formers >> Direct Acting Schiff Base Formers Schiff base formers >> Direct Acting Schiff Base Formers >> Mono aldehyd.		K = DIVA chain
Organic functional groups (nested) Organic functional groups (US EPA) Protein binding by OASIS	Schiff base formation	Map 1	
Organic functional groups, Norbert Haider (checkmol) Protein binding by OECD Protein binding alerts for Chromosomal aberration by OA:	Schiff Base Formers		Sructural alert mitigating factors
Protein binding by OASIS Protein binding by OECD Aquatic toxicity classification by ECOSAR	Aldehydes (Mono)		No mitigating factors have been reported for the chemicals in this mechanistic alert.
✓ Structure sinfanty ✓ Substance type ✓ Substance type ✓ DNA alerts for AMES, CA and MNT by OASIS	No alert found Simple aldehyde		vo naugaang ractors have been reported tor the elementa in this meetianistic acti.
US-EPA New Chemical Categories			
In two mutagenerity (micronucleus) alerts by I classified Acute aquatic toxicity classification by Verhaar (Modified)			
Acute aquatic toxicity MOA by OASIS			
Acute Oral Toxicity Chemical elements Bioaccumulation - metabolism alerts	Group 14 - Carbon C		
Bioaccumulation - metabolism half-lives	Non-Metals		

1) Double click on the cell and to see why the target is profiled as "Mono aldehydes" by *DNA binding by OECD* profiler; 2) Select the category **"Mono aldehydes"**; 3) Click **Details**; 4) A new window with literature info appears. 5) Explore the mechanism and close the window.


Outlook

- Background
- Keywords
- Objectives
- Specific Aims
- Read-across
- The exercise
- Workflow of the exercise
 - Input
 - Profiling
 - Data

Data Overview


- "Gather data" refers to the electronic process of retrieving the fate and toxicity data that are stored in the Toolbox database.
- Note, data can be gathered in a global fashion (i.e., collecting all data of all endpoints) or on more narrowly defined settings (e.g., collecting data for a single or limited number of endpoints)
- Database "relevancy" is determined based on the defined target endpoint (see next slide).

Data Gather data

1. Go to **Data** module. The databases containing data for the defined target endpoint will be highlighted in green. 2. Group the databases according to the target endpoint (all green databases will appear at the top); 3. Unselect all previously selected databases; 4. Check the box in front of "Data available"; 5. Click **Gather**; A window with "Read data?" appears.; 6. Click **OK** to collect all data for the target chemical available in the selected databases.

Data Process of collecting data

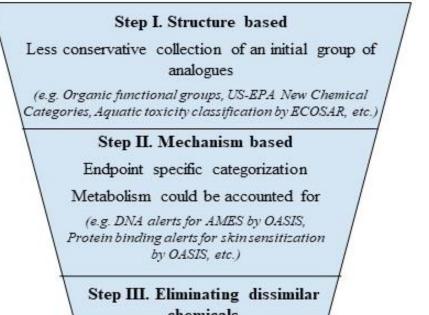
In this example, an alerting window appears stating that there are two experimental data points available for the target chemical. According to the available data, the target chemical is negative without and with accounting for metabolic activation (S9).

Data Recap

- All databases containing data for the endpoint (Ames mutagenicity) have been highlighted and grouped according to the target endpoint.
- Two negative experimental data results for n-hexanal (the target chemical) have been found in the selected databases.
- We will try to reproduce the experimental data by searching of analogues and making use of a read-across approach.
- Click on "Category definition" to move to the next module.

Outlook

- Background
- Keywords
- Objectives
- Specific Aims
- Read-across
- The exercise
- Workflow of the exercise
 - Input
 - Profiling
 - Data
 - Category definition


Category Definition Overview

- As stated in the previous tutorial, this module provides the user with several means of grouping chemicals into a toxicologically meaningful category that includes the target molecule.
- This is the critical step in the workflow of the Toolbox.
- Several options are available in the Toolbox to assist the user in defining the category definition.
- The different grouping methods allow the user to group chemicals into chemical categories according to different measures of "similarity" so that within a category data gaps can be filled by read-across.

Category Definition Grouping methods

- The different grouping methods allow the user to group chemicals into chemical categories according to different measures of "similarity" so that within a category data gaps can be filled by read-across.
- For this example, we will start from a broad group based on Organic functional group and after that
- Will refine the category by a specific DNA binding mechanism identified for the target chemical and find analogues which can bind by the same mechanism and for which experimental results are available.

Category Definition Suitable Categorization/Assessment Phases

chemicals

Outliers reasoning

Broad grouping Endpoint Non-specific

Subcategorization Endpoint Specific

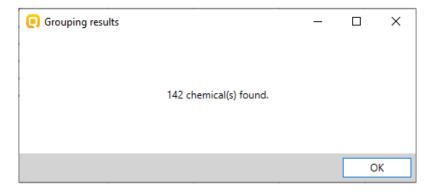
Subcategorization Endpoint Non-specific

Note: As long as an acceptable level of structural and mechanistic similarity is achieved, it is not mandatory to follow all the stages described in the order given above; they can be executed differently or even skipped.

For example, in case the target chemical or any of its metabolites interact with biomacromolecules via a clearly defined mechanism relevant for the endpoint to predict, Stage I could be skipped and Stage II to be used for the primary categorization step.

Category Definition Suitable Categorization/Assessment Phases

- In the current example we will define a broad group of analogues using the *Organic functional groups* (OFG) profiler (step I).
- After that we will refine the category by the specific DNA binding mechanism identified in the target chemical and will keep the analogues which can bind by the same mechanism and for which experimental results are available.


Category Definition Defining Organic functional group

► Input ► F		Report
Define tabolism Subcategorize Combine Clustering	stegory elements	ping options (Organic functional groups) — — X
A Documents Organic functional groups Options J Options J 1 Selected f Select All Unselect All Invert About Options a Suitable DNA alerts for AMES, CA and MNT by QASIS	Filter endpoint tree I [target] I [target] Aldehy Hyc	-
DNA binding by OASIS DNA binding by OASIS DNA binding by OECO in vitro mutagenicity (Ames test) alerts by ISS Plausible Aquatic toxicity classification by ECOSAR Chemical elements Groups of elements	Structure info Parameters Physical Chemical Properties Ectoxicological Information Human Health Hazards	ons
orioups of elements in vivo mutagenicity (Micronucleus) alerts by ISS Lpinski Rule Oasis OFCD. UNIV. Characteristic Analogies Organic functional groups Organic functional groups Organic functional groups (US EPA Organic functional groups, Norbert	Acute Toxicity ADME ADME Bioaccumulation Carcinogenicity Developmental Toxicity / Teratogenicity (N/A)	own Up Reset Options gories num, organo arboxylic and carboxylic acids thioanhydrides
Protein binding alerts for Chromosomal aberration by OASIS Protein binding by OASIS Protein binding by OECD Structure similarity Substance type US-EPA New Chemical Categories	In Vitro Bacterial Reverse Mutation Assay (e.g.,	Alert performance Alert performance Scales Sort results Alert performance Calculate
Oriclassified Acute aquatic toxicity classification by Verhaar (Modified) Acute aquatic toxicity MOA by OASIS Acute Oral Toxicity Bioaccumulation - metabolism alerts Bioaccumulation - metabolism half-lives Biodeg BioHC half-life (Biowin) Biodegradation fragments (BioWIN MITI) Biodegradation primary (Biowin 4) Biodegradation probability (Biowin 1)	Gene mutation 1/1 M: Negative	OK Cancel

1. Go to the *Category definition* module; 2. Select **Organic functional groups** profiler; 3. Click **Define**; 4. The target category is *Aldehydes*; 5. Click **OK**

Category Definition Analogues

- The Toolbox now searches for all chemicals corresponding to category "Aldehydes" by the same profiler (i.e. Organic functional groups) listed in the databases selected under "Data" (see slide 42).
- A message with numbers of found analogues (including the target chemical) appears.

Category Definition Read data for Analogues

- The Toolbox automatically requests the user to select the endpoint for which the data should be retrieved.
- The user can either select the specific endpoint or by default choose to gather data for all endpoints (see below)

💽 Read data?	×
All endpoints O Choose	
	OK Cancel

 In this example, because only databases containing information for genetic toxicity endpoint are selected, both options will give the same results.

Category Definition Summary information for Analogues

er endpoint tree	ү 1 [target]	2	3	4	5	6	7	8	9	10	11	12
ructure	HgC		Hyf. O	**~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Hy5~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	235	~oro~		s,O	H3C	H3C	8
literate		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- Jus				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~	[,]	0		ne "La
Physical Chemical Properties												
nvironmental Fate and Transport												
cotoxicological Information Human Herth Hannals												
	112	- le			142 6							
Acute T There are	112 (cnemic	ais (o	ut or	142 Na	aving	Alden	yae g	jroup)	with		
Bioaccu 538 data p	oninte	hahen	on da	ta mai	triv							
	Joints	loaueu	Un ua									
— Developmentar roxierty / teratogenetry	•											
Genetic Toxicity	•											
- in Vitro												
Bacterial Reverse Mutation Assey (e.g.												
	4/8							Wit Regative	•			
Salmonella typhimurium												
+ No S9 Info 87,		M: Positive				M: Negative	M: Positive		M: Positive	M: Positive	M: Negative	
	478 M: Negative	M: Negative	•	M: Negative	M: Negative	-	M: Positive	M: Negative	M: Equivocal	.M: Negative	M: Negative	•
- Without S9	Mi Negativa	M: Negative		M: Negative	M: Negative			M: Negative	M: Equivocal	M: Negative	M: Negative	M: Negative
Gene mutation 112/5	538 M: Negative	M: Negative		IVI: Negative	M: Negative			M: Negative	M: Negative	M: Negative	M: Negative	M: Negative
DNA Damage and Repair Assay, U	1/1	-						M: Negative				
+ in Vitro Mammalian Chromoso 16		M: Negative	M: Negative	M: Negative	M: Negative			M: Positive	_			
Hammalian Cell Gene Mutation A	5/5	M: Positive	•	•	•				•			
	1/1							M: Negative				
t in Vivo 6/	/11							M: Negative				
- Immunotoxicity								-				
- Irritation / Corrosion												
- Neurotoxicity												
 Photoinduced toxicity 												
- Repeated Dose Toxicity												
)P											
- Sensitisation AW SW AC												
— Sensitisation AW SWAC — ToxCast												
— ToxCast												
 ToxCast Toxicity to Reproduction 												
— ToxCast	• •											

Category Definition Side-Bar of experimental data

ilter endpoint tree	Y 1 [target]	2	3	4	5	6	7	8	9	10		11	12
Structure	HJC	°Q	HJC O CO	1660	Hy5~~~~~\$*0		~0,0^	~0		р ну	~~~~	H3C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	÷£
Physical Chemical Properties													
Environmental Fate and Transport													
Ecotoxicological Information	🦲 Data points											-	
Human Health Hazards	Datapoints	# Val	ue Ori	iginal valu Assigned	S Author	Database	Endpoint	Metabolic act	Record ID	Reference sour	e Strain	Test orga	nisms (species
-+ Acute Toxicity				,									(op-200
- E ADME													
Bioaccumulation	Human Health Hazards:Genetic	1 M: Negat		egative ene False	Florin I., et al.	Genotoxicity	Gene	Without S9	2267	Florin I., et al., Toxicology, 18	TA 98	Salmona	la typhimuriur
Carcinogenicity	Toxicity	mutation		utation I)	FIORIN I., et al.	OASIS	mutation	Without 39	2207	219-232, 1980		Saimone	ia typnimunur
— Developmental Toxicity / Teratogenic	,												
in Vitro Bacterial Reverse Mutation Assa Escherichia coli	<												
Salmonella typhimurium	Hierarchical mode	Find											OK
H No S9 Info	87/478 M: Negative	M: Negative		M: Negative	M: Negative		M: Positive	M. Negativa	M: Equ	vive col Mi N	egative	M: Negative	
With S9	or/4/o Will Negative	wi. Negative	•	Wi. IVegative	wi. wegative		WI. FOSITIVE	M: Negative	- we equ	inocal _ Mi. IV	egative .	ivi. ivegative	
	M: Negative	M: Negative		M: Negative	M: Negative			M: Negative	M: Equ	uivocal M: N	egative	M: Negative	M: Negative
Gene mutation	112/53	M: Negative		~	M: Negative			M: Negative				M: Negative	M: Negative
→ DNA Damage and Repair Assay,	U 1/1							M: Negative					
+ in Vitro Mammalian Chromoso	16/36	M: Negative	M: Negative	M: Negative	M: Negative			M: Positive					
Hammalian Cell Gene Mutation	A 5/5	M: Positive											
+ Single Cell Gel Electrophoresis (c	:o 1/1							M: Negative					
└─── in Vivo	6/11							M: Negative					
Immunotoxicity Irritation / Corrosion Neurotoxicity Photoinduced toxicity Repeated Dose Toxicity Sensitisation AW S ToxCast Toxicity to Reproduction		-click o e you m						•		ls for	"Mea	isured	")
ioxicity to reproduction													
Taulashinatian Matabalian	hutlen												
Toxicokinetics, Metabolism and Distri Profiling	bution												

Category Definition Recap

- You have defined a category consisting of 142 analogues ("Aldehydes" by OFG classification) with the target chemical (n-hexanal).
- The available experimental data for these 142 similar chemicals are collected from the previously selected databases under Data section.
- 538 data points for the target endpoint are available for 112 out of 142 chemicals.
- You are now ready to fill in the data gap and trying to reproduce the experimental data of the target.
- In this example we will apply the read-across method due to the qualitative mutagenicity data (the trend analysis method is applicable only to quantitative estimates, e.g. LC50).
- Two predictions will be done without and with accounting for metabolic activation (i.e. S9).

Outlook

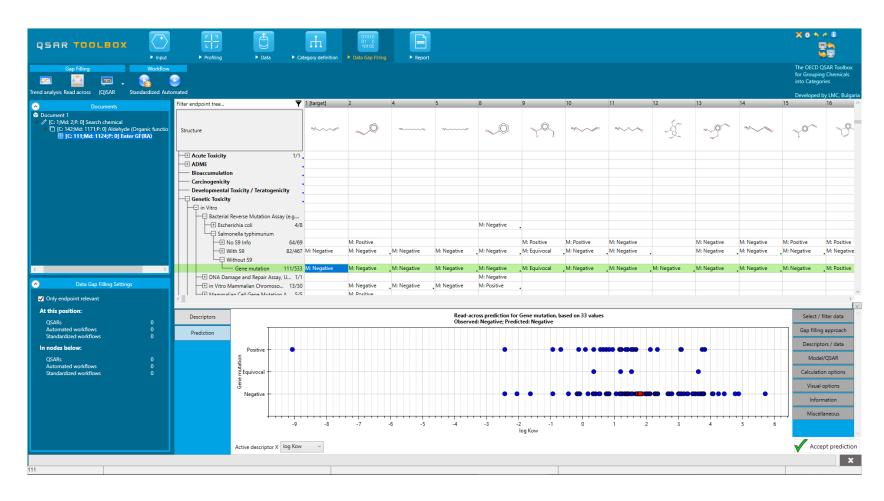
- Background
- Keywords
- Objectives
- Specific Aims
- Read-across
- The exercise

Workflow of the exercise

- Input
- Profiling
- Data
- Category definition
- Data Gap Filling
 - Ames without S9

Data Gap Filling

Continue with read-across for Ames without S9


QSAR TODLEDX	3		01010 01 0 10100 Data Gap Filling	Possible data inconsistency — □ × Metadata Endpoint Gene mutation (112 chemicals; 538 data) Metabolic activation ✓Without S9 (112 chemicals; 538 data) Native scale/unit ✓Gene mutation I (110 chemicals; 530 data)
Occur 3 Image: Document 1 Image: Document 1	Filter endpoint tree	1 [target]	2	✓ Gene mutation II (2 chemicals; 8 data) 8 9 ✓ Test organisms (species) ✓ Salmonella typhimurium (112 chemicals; 538 data) 8 9 ✓ Test type ✓ Bacterial Reverse Mutation Assay (e.g. Ames Test) (112 chemicals; 538 data) 0 0 0 ✓ Type of method ✓ in Vitro (112 chemicals; 538 data) ✓ O ✓ O ✓ O
	Physical Chemical Properties Environmental Fate and Transport Ecotoxicological Information Human Health Hazards Acute Toxicity 1/ ADME Bioaccumulation Carcinogenicity Developmental Toxicity / Teratogenicity			Select-scale/unit-to-use Gene mutation [5:30 native data and 8 converted] Gene mutation [8 native data and 0 converted] Converted data 8 from scale/unit Gene mutation 4
C Data Gap Filling Settings	Salmonella typhinurium	/8	M: Positive M: Negative	Chemicals 112/112; Data 538/538 OK Cancel M. Newstart M. Newstart M: Neg 5 observed values for 1 chemical were excluded due to missing X descriptor M: Equivocal
Only endpoint relevant At this position: QSARs 0 Automated workflows 0	Gene mutation 112/5 DNA Damage and Repair Assay, U 1 Di Divitro Mammalian Chromoso 16/	/1	M: Negative M: Negative M: Negative	M: Neg M: Neg M: Neg M: Neg

1. Go to the **Data Gap Filling** module; 2. Click on the cell from data matrix corresponding to the target chemical and the target endpoint; 3. Click **Read across** button; 4. Keep the default scale selection "**Gene mutation I**" – this is the most general scale converting the data only to positive/negative. Click **OK**; 5. An alerting message informing the user that 1 chemical with 5 observed value is excluded due to missing X values for it. By default the X descriptor is logKow. The excluded substances could be mixtures, UVCB, etc, for which the logKow could not be calculated. Click **OK**

Data Gap Filling (Ames without S9) Interpretation of the Read across

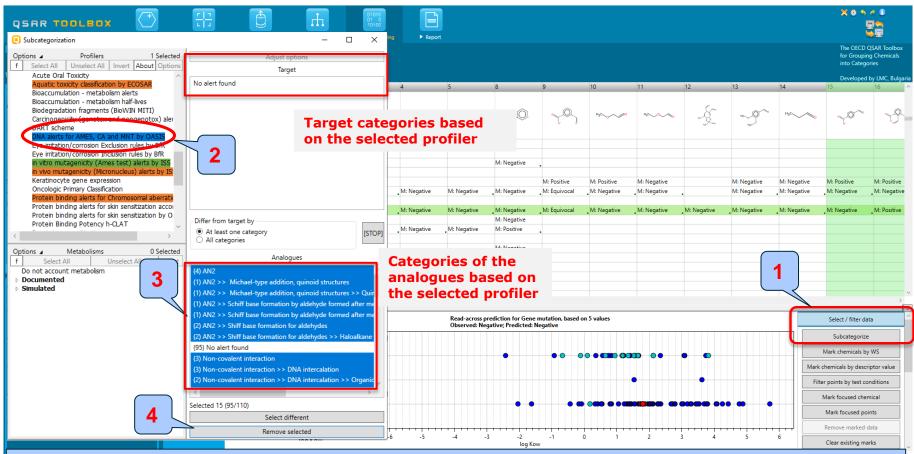
- The resulting plot outlines the experimental Ames results of all analogues (Y axis) according to a descriptor (X axis). Note, Log Kow is on the X-axis; while this descriptor is not significant to Ames data, it is the default descriptor for data gap filing (see next screen shot).
- The **RED** dot represents the predicted value for target chemical (see next screen shot).
- The **BROWN** dots represent the observed value for the target neighbours (analogues) used for read-across.
- The **BLUE** dots represent the experimental results available for the analogues but not used for read-across (see next screen shot).
- Please note **LIGHT BLUE** dots (which you will see shortly) represent analogues belonging to different subcategories.

Data Gap Filling Results for Ames without S9

Data Gap Filling (Ames without S9) Interpretation of the Read across

- As seen there are mutagenic and not mutagenic analogues of the target chemical
- Therefore, the fist step will be to apply the worst-case scenario, i.e. if a chemical has positive and negative data simultaneously, then the positive one to be taken into account.
- Before data gap filling it is also recommended to check the similarity of the analogues used for the prediction. This is performed in order to assure the category consists of analogues that are both mechanistically and structurally similar. The latter is done by a so called "subcategorization".

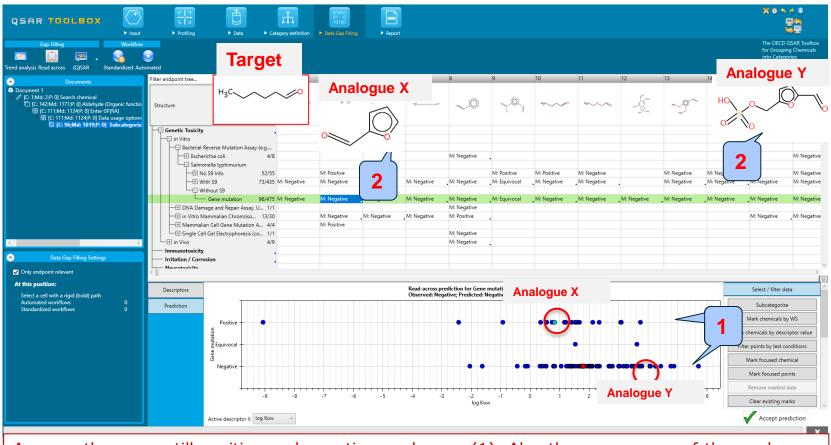
Data Gap Filling (Ames without S9)


Take the worst-case scenario

Gap Filling Workfli	w Design												for Groupi into Categ	
Documents	Filter endpoint tree	💙 1 [target]	2	4	5	8	9	10	11	12	13	14	Developed 15	l by LMC, Bu 16
ocument 1 * [C: 1;Md: 2;P: 0] Search chemical * [D: 142;Md: 1171;P: 0] Aldehyde (Organic funct II: 11;Md: 1124;P: 0] Enter GF(RA)	o Structure	H3C~~~~~~C		***0	H500	90 0 <u>0</u> 0		HyC	HJC~~O~~~	÷.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	HgC	~ ^{0^}	X
	In Vitro Bacterial Reverse Mutation Ass Salmonella typhimurium No S9 Info With S9	64/69 82/467 M: Negative	M: Positive M: Negative	_M: Negative	M: Nega	Choose one			×		M: Negative M: Negative	M: Negative M: Negative	M: Positive M: Negative	M: Posi M: Neg
	Without S9	111/533 M: Negative	M: Negative	M: Negative	M: Nega	O Mode				M: Negative	M: Negative	M: Negative	M: Negative	M: Pos
	Gene mutation DNA Damage and Repair Assa		IN: Negative	. IN: INEGATIVE	W: Nega	○ Lowest mode				IVI: Negative	wi: ivegative	WI: Negative	IN: Negative	- IMI: POS
	+ in Vitro Mammalian Chromoso		M: Negative M: Positive	M: Negative	M: Nega	⊖ Highest mode								
			With Ostave			O Median								
	Immunotoxicity	4/9			<u> </u>	O Lower median								
	Irritation / Corrosion				2	 Higher median 								
Data Gap Filling Settings	Neurotoxicity Photoinduced toxicity	•				 Minimal 	C							_
Only endpoint relevant	<			_		Maximal		3						
this position:	Descriptors				Read-ac Observe			3					Gap ming appro	
Automated workflows 0	Prediction				Observe			\neg	-				Descriptors / da	
Standardized workflows 0								OK	Cancel		\square		Model/QSAR	{
DSARs 0	Positive									• •	1		Calculation opti	ons
Automated workflows 0 Standardized workflows 0	Equivocal +										ر ا		Data usage	
	iene r											P	rediction approach	options
	Negative					• • •	• • •					Us	e target data for p	rediction
												Do no	t use target data fo	or predicti
		-9 -8	-7 -6	5 -5	-4	-3 -2 log Kow	-1 0	1	2	3 4	5	6	Set level of signifi	cance
						2							Accept pre	

QSAR TOOLEOX

Data Gap Filling (Ames without S9)


Subcategorization by DNA alerts for AMES, CA and MNT by OASIS (endpoint-specific)

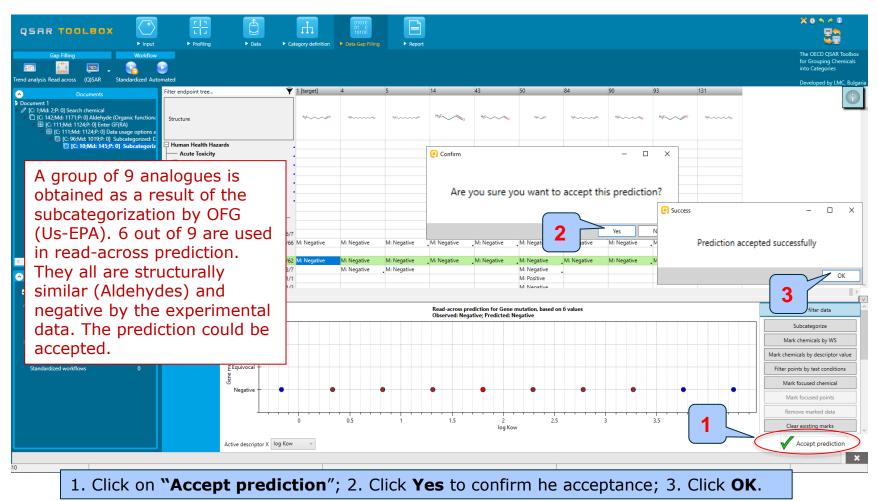
1. Go to **Select / filter data** >> **Subcategorize** 2. Select **DNA alerts for AMES, CA and MNT by OASIS** profiler; 3. The chemicals different to the target according to this profiler will be highlighted in light blue; 4. **Click** Remove selected.

Data Gap Filling (Ames without S9)

Analysis of the remaining analogues

As seen there are still positive and negative analogues (1). Also there are many of the analogues which are quite dissimilar to our target chemical (2). In order to eliminate dissimilar analogue (structurally dissimilar), we will use one of the organic functional groups profiler for subcategorization (see the next slide).

QSAR TOOLEOX


Data Gap Filling (Ames without S9)

Subcategorization by Organic functional groups (US-EPA) (empiric)

Subcategorization	- 🗆	×	01010 01 0 10100										×os	
Select All Unselect All Invert About Options	Target	on		Report										
Skin irritation/corrosion Exclusion rules by BF Skin irritation/corrosion Inclusion rules by BF impiric Chemical elements Groups of elements	Aldehyde, aliphatic attach [-CHO] Aliphatic Carbon [CH] Aliphatic Carbon [-CH2-] Aliphatic Carbon [-CH3]												The OECD C for Grouping into Catego Developed b	g Chemicals ries
Lipinski Rule Oasis	Miscellaneous sulfide (=S) or oxide (=O)		65	66	68	69	70	71	72	77	76	78	79	80
Organic functional groups (nested) Organic functional groups (US EPA) Organic functional groups, Norbert Haider (checkmol) Structure similarly Tautomers unstable	Olefinic carbon [=CH- or =C<]		0	~5		~76,	H ₃ C	₩.	-9	-9^	200	4 And		
Toxicological Repeated dose (HESS)			M: Negative	M: Negative	M: Negative	M: Positive	M: Negative	M: Negative	M: Negative	M: Negative	M: Negative	M: Negative	M: Negative	M: Positive
Example Prioritization Scheme (PBT) Skin sensitisation for DASS v	Differ from target by								M: Positive					
>	At least one category All categories	[STOP]												
ions Metabolisms O Selected Select All Unselect All Invert	Analogues								M: Negative					
Documented	(1) 2,2-bis-(alkoxy)-1-alkanol [COC(C(OH))OC]	^												
Observed Mammalian metabolism	 (1) 2,3,3-Trialkoxy alcohol derivative [HOCC(-O-)C(-O-)[-O-)] (1) 3-Amino-2-hydroxycarboxylate deriv. [NCC(OH)C(O)(O)] 													
Observed Microbial metabolism Observed Rat In vivo metabolism	(1) S-Amino-2-hydroxycarboxylate denv. [NCC(OH)C(O)(O)] (1) Acid, aromatic attach [-COOH]													
Observed rat liver metabolism with quantitative data Observed Rat Liver S9 metabolism	(1) Alcohol, olefinic attach [-OH]													
Simulated	(53) Aldehyde, aliphatic attach [-CHO]	_												
Autoxidation simulator Autoxidation simulator (alkaline medi	(41) Aldehyde, aromatic attach [-CHO] (4) Aliphatic Carbon [C]													
Dissociation simulator	(75) Aliphatic Carbon [CH]													
Hydrolysis simulator (acidic) Hydrolysis simulator (basic)	(74) Aliphatic Carbon [-CH2-]								-					
Hydrolysis simulator (neutral) in vivo Rat metabolism simulator	(67) Aliphatic Carbon [-CH3]	~								4				
Microbial metabolism simulator	Selected 86 (9/95)				Read-across pr	diction for Gene	mutation, based or	5 values					Select / filter dat	
Rat liver S9 metabolism simulator Skin metabolism simulator	Select different				Observed: Neg	ative; Predicted: N	legative	5 Values					Select / Intel dat	a
Tautomerism v	Remove selected												Subcategorize	
	Positive						•		m ••	• •>			Mark chemicals by	WS
	, g						-					Mar	chemicals by descri	ptor value
	3 Equivocal								•	•		Fi	ter points by test cor	nditions
						• •	• •	moom					Mark focused chem	nical
	reguire												Mark focused poin	nts
		H										+++ 	Remove marked d	ata
	-9	-8	-7 -6	-5	-4 -3	-2 log Kov	-1 0 v	1	2	3 4	5	6	Clear existing man	ks
													<i>.</i>	

1. Explore the different types of organic functional groups profilers. We can see that **Organic functional groups (US-EPA)** profiler removes all positive analogues, i.e. it leads to consistent results; 2. The statistic shows that 86 chemicals are identified as different to the target and nine chemicals out of 95 analogues will remain after applying of subcategorization with this profiler. 3. Click **Remove selected**.

Data Gap Filling (Ames without S9) Read across result

Data Gap Filling Results

QSRR T Gap F Cap F Cap F Cap F	3	► Input Workflow dardized Automated	► Profiling	← Data	► Cate	Gory definition	01010 01 0 10100 Data Gap Filling		Report								Tì fa in	e OECD QSAR To r Grouping Chem to Categories	icals
>		Documents			Filter end	dpoint tree		Y	1 [target]	2	3	4	5	6	7	8	9	10	11
⊿ 🔁 [C: 142 ⊿ 🌐 [C: ⊿ 🌐	P: 1] Search chemical 2;Md: 1171;P: 1] Aldehyd 111;Md: 1124;P: 1] Enter G [C: 111;Md: 1124;P: 1] Dat	F(RA) a usage options are c	hanged to: Maximal		Structu	ire			HgC	~0	*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	144	15	A.	~0.0	~0	7 0,	HyC	,
	[C: 96;Md: 1019;P: 1] 5 [C: 10;Md: 145;P: 1]				+ Physic	cal Chemical	Properties												
		observey on a construction of	game ranctional group	5 (55 211)	+ Enviro	onmental Fat	and Transport												
					🕀 Ecoto	xicological Ir	formation												
					🖃 Huma	n Health Ha	ards												
						ute Toxicity		1/1											
						DME													
					Bi	oaccumulatio	n												
						rcinogenicit	,												
							Toxicity / Teratogen	icity											
						enetic Toxicit		,											
						in Vitro													
						- 🕀 Bacteria	Reverse Mutation As	ay (e.g											
						+ Esch		4/8								M: Negative			
(>			onella typhimurium				_								
							lo S9 Info	87/92		M: P				M: Negative	M: Positive		M: Positive	M: Positive	м
<u>></u>	Da	a Gap Filling Settings				E 1	Vith S9	87/478	M: Negative	M: N		M: Negative	M: Negative		M: Positive	M: Negative	M: Equivocal	M: Negative	.м
Only endpoint	t rolovant					Lę,	Vithout S9												
						L	- Gene mutation	112/539	R: Negative 🥒	WE M		M: Negative	M: Negative			M: Negative	M: Equivocal	M: Negative	M
At this position									M: Negative	M: Negative			M: Negative			M: Negative	M: Negative	M: Negative	. M
	ith a rigid (bold) path						mage and Repair Assa									M: Negative			
Automated wo				0			Mammalian Chromoso			M: Negative	.M: Negative	M: Negative	. M: Negative			M: Positive	•		
Standardized v	workflows					─± Mamma	lian Cell Gene Mutatio	n A 5/5		M: Positive									

- By accepting the prediction read-across for the current endpoint (Ames mutagenicity without S9 activation) is finished and the data gap is filled ("R" stands for read-across) (1). The target is predicted as *Ames mutagenicity negative* based on the read-across analysis.
- The user can proceed with the workflow for the second endpoint, which in this case will be "Ames with S9"
- Because the analogues are selected by the structure-based profiler *Organic functional groups*, we can use the same analogues for the prediction.
- In this case we need just to change the target endpoint.

QSAR TOOLEOX

Outlook

- Background
- Keywords
- Objectives
- Specific Aims
- Read-across
- The exercise

Workflow of the exercise

- Input
- Profiling
- Data
- Category definition
- Data Gap Filling
 - Ames without S9
 - Ames with S9

Data Gap Filling (Ames with S9) Define the target endpoint

SAR TOOLBOX	Input Profiling Data	Category definition	01010 01 0 10100 • Data Gap Filling	► Report										
🔛 📼 🗸 😪	orkflow												The OECD QSAR for Grouping Ch into Categories	hemical
	Filter endpoint tree	💙 1 [target]	2	3	4	5	6	7	8	9	10	11	Developed by LN	MC, Bu 13
Documents iment 1 2: 1/Md: 2/P: 1] Search chemical ☐ [C: 142;Md: 1171;P: 1] Aldehyde (O ④ [E: C: 111;Md: 1124;P: 1] Enter GF(RA ▲ 钿 [C: 111;Md: 1124;P: 1] Data us	gar Structure	54	â	446- C O	******	***	de		~0	<u>ر</u> م،	HgC		÷	
《 (C. 96,Md: 1019,P: 1] Subc ⓒ (C. 10,Md: 145,P: 1) Su	teg	1/1												
	Bioaccumulation Carcinogenicity Developmental Toxicity / Teratogenicity Genetic Toxicity in Vitro	Export Data m Export CAS list			2									
	Bacterial Reverse Mutation Assay (e.g. Ar Escherichia coli Salmonella typhimurium	Collapse brand	h	Тору			M: Negative	M: Positive	M: Negative	• M: Positive	M: Positive	M: Negative		N
Data Gap Filling Settings	Gene mutation	🧐 Target endpoir		Define		gative		M: Positive	M: Negative	M: Equivocal	M: Negative	M: Negative	•	M
ion: with a rigid (bold) path workflows 0	Gene mutation	Copy path Remove chemi	cals without data	befine fr	om clipboard	gative gative			M: Negative M: Negative M: Negative	M: Equivocal M: Negative	M: Negative M: Negative	M: Negative M: Negative	M: Negative M: Negative	M
d workflows 0	In Vitro Mammalian Chromosome Aberr Mammalian Cell Gene Mutation Assay Single Cell Gel Electrophoresis (comet) A	Sort		Negative	M: Negative	M: Negative			M: Positive M: Negative					_
	Irritation / Corrosion Neurotoxicity	Activate Effect	opedia Wizard						M: Negative	•				_
	Photoinduced toxicity Repeated Dose Toxicity Sensitisation	V SW AOP												_

1. Apply right click to the row corresponding to *Human Health Hazards >> Genetic Toxicity >> in Vitro >> Bacterial Reverse Mutation Assay (e.g. Ames Test) >> Salmonella typhimurium >> With S9 >> Gene <i>mutation*; 2. Select **Target endpoint >> Define**. The window with the defined target endpoint will appear (see next slide)

Data Gap Filling (Ames with S9) Define the target endpoint

SAR TOOLBOX	Profiling Profiling Pada Category definition Profiling	Filing > Report	
Gap Filling Workflo	<u>.</u>		The OECD QSAR Tool for Grouping Chemica into Categories Developed by LMC, B
Documents Document 1 P(C; Mid: 2P; 1] Search chemical ← (G: 142446: 1717; P; 1] Atdelsyde (Organ ← (G: 111446: 1124; P; 1] Criter Of (RA) ← (G: C: 111446: 1124; P; 1] Data usage C: C: 06446: 1019; P; 1] Subcateg (C: 10446: 145; P; 1] Subcateg	Filter endpoint tree Filter endpoint tree Structure Physical Chemical Properties Environmental Fate and Transport Ectoxicological Information Human Health Hazards Human Health Hazards Acute Toxicity Developmental Toxicity / Teratogenicity	3 4 5 6 7 8 9 10 11 Select endpoint Human Health Hazards Genetic Toxicity	
Data Gap Filling Settings Only endpoint relevant t this position: Select a cell with a rigid (bold) path Automated workflows 0	Genetic Toxicity Gene	Type of method R in Vitro Test type R Bacterial Reverse Mu Test organisms (species) R Salmonella typhimuri Metabolic activation R With S9 Endpoint R Gene mutation Strain R Construction R With S9 Endpoint R Gene mutation Strain R Construction R Construction R Construction R Construction R Construction R Construction R Construction R Construction R Construct	M: Negative N M: Negative N
	Mammalian Cell Gene Mutation Assay 5/5 M: P Min Mammalian Cell Gene Mutation Assay 1/1 Min Mutation Assa	Add Up Down Clear Remove	

1. A window with the automatically fulfilled fields appears. 2. The only difference with respect to the previous endpoint is field **"Metabolic activation"**. In this case **"With S9"** is preselected. Keep it as it is; 3. Click **Finish** button.

Data Gap Filling (Ames with S9) Define the target endpoint

analysis Read across (Q)SAR Standardized A			2 4 5 13	2	2		c.	c	7	0	9	10	De	o Categories veloped by LM
Documents Document 1	Filter endpoin	it tree	1 [target]	2	3	4	5	6		8	-	10	11	12
 [C: 1]:Md: 2;P: 1] Search chemical [C: 142;Md: 1171;P: 1] Aldehyde (Organ (C: 111:Md: 1124;P: 1] Enter GF(RA) (C: 111:Md: 1124;P: 1] Data usage (Structure		Нас	~	Hys- U	%~~~~~%o	Hy6~~~~~40		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~0	~ 0,	HyC	HgC	-Ş
 ▲ 등 (C: 96/Md: 1019/P: 1) Subcateg ⑥ (C: 10/Md: 145/P: 1) Subcat 	+ Acute + ADME													
	Carcin	ogenicity												
	Geneti													
		Bacterial Reverse Mutation Assay (e.g. Ames Test) Escherichia coli Salmonella typhimurium	8							M: Negative	•			
			2	WI. POSITIVE				wi: ivegauve	W. POSitive		WI: POSITIVE	W. POSitive	M. Negauve	
) Data Gap Filling Settings		Gene mutation 87/47	M: Negative 8	M: Negative M: Negative M: Negative M: Negative		M: Negative	M: Negative M: Negative		M: Positive M: Positive	M: Negative M: Negative M: Negative M: Negative	M: Equivocal M: Negative M: Negative M: Negative	M: Negative M: Negative M: Negative M: Positive	M: Negative M: Negative M: Negative M: Negative	
Only endpoint relevant this position:		Gene mutation 112/53	9 M: Negative R: Negative	M: Negative M: Negative		M: Negative	M: Negative M: Negative			M: Negative M: Negative	M: Equivocal M: Negative	M: Negative M: Negative	M: Negative M: Negative	M: Negativ M: Negativ
Select a cell with a rigid (bold) path		DNA Damage and Repair Assay, Unscheduled 1/		W. Negative			Wi. Negative			M: Negative	. Wit Negative	. Wit Ivegative	. INI: INEGALIVE	. Iviegativ
Automated workflows 0 Standardized workflows 0		in Vitro Mammalian Chromosome Aberrati 16/3 Mammalian Cell Gene Mutation Assay 5/		M: Negative M: Positive	. M: Negative	.M: Negative	.M: Negative			M: Positive				
		Single Cell Gel Electrophoresis (comet) Assay 1/								M: Negative M: Negative				
	- Immur	notoxicity								lantegaare	•			
	Irritati Neuro	on / Corrosion toxicity												-
		nduced toxicity												
	Sensiti	ted Dose Toxicity sation AW SW AOF	•											

Data Gap Filling (Ames with S9) Apply Read-across

Gap Filling Work	cw				The OECD QSA
1 🔝 📼 . 💊					for Grouping Cl into Categories
nalys s Read across (Q)SAR Standardized	Automated				Possible data inconsistency Overlaped by L Developed by L
Docum	Filter endpoint tree 💙	1 [target]	2	3	4 Metadata 11 12
Document 1	Structure	H3C~~~~~0	~Q	**c	Endpoint Gene mutation (87 chemicals; 478 data) Metabolic activation
IC: 96;Md: 1019;P: 1] Subcateg					With S9 (87 chemicals; 478 data)
🔯 [C: 10;Md: 145;P: 1] Subcat	Human Health Hazards Acute Toxicity 1/1	·			▲ Native scale/unit
	Active loading				Gene mutation I (85 chemicals; 470 data)
	Bioaccumulation				Gene mutation II (2 chemicals; 8 data)
	Carcinogenicity				Test organisms (species) Salmonella typhimurium (87 chemicals; 478 data)
	Developmental Toxicity / Teratogenicity				Samonella typnimunum (s/ chemicals; 4/s data)
	Genetic Toxicity				✓ Bacterial Reverse Mutation Assay (e.g. Ames Test) (87 chemicals; 478 data)
	in Vitro				Type of method
	Bacterial Reverse Mutation Assay (e.g. Ames Test) Escherichia coli 4/8				✓ in Vitro (87 chemicals; 478 data)
	Salmonella typhimurium				En vito (or chemicals, 470 data)
	No S9 Info 87/92		M: Positive		Select scale/unit to use M: Negative
	With S9				Gene mutation I [470 native data and 8 converted]
>		M: Negative	M: Negative		M: O Gene mutation II [8 native data and 0 converted] M: Negative
	Gene mutation 87/478		M: Negative M: Negative		M: Negative M: Negative
Data Gap Filling Settings			M: Negative		W: regative M: Negative
nly endpoint relevant	- Without S9				
his position:	Gene mutation 112/539	M: Negative R: Negative	M: Negative		M: M: Negative M: Negative
		R: Negative	M: Negative		Converted data M: Negative M: Negative
Select a cell with a rigid foold) path Automated workflows 0 Standardized workflows 0	DNA Damage and Repair Assay, Unscheduled 1/1 in Vitro Mammalian Chromosome Aberrati 16/36		M: Negative	M: Negative	M: 8 from scale/unit Gene mutation II
	In Vitro Mammalian Chromosome Aberrati 16/36 Mammalian Cell Gene Mutation Assay 5/5		M: Negative M: Positive	. w. wegauve	
	Single Cell Gel Electrophoresis (comet) Assay 1/1				9
	in Vivo 6/11				
	Immunotoxicity				
	Irritation / Corrosion				
	Neurotoxicity				Chemicals 87/87; Data 478/478 OK Cancel
	Photoinduced toxicity				
	Repeated Dose Toxicity Sensitisation AW SWAOP				
	ToxCast				
	Toxicity to Reproduction				
	Toxicokinetics, Metabolism and Distribution				
	+ Profiling				

Data Gap Filling (Ames with S9) Apply Read-across

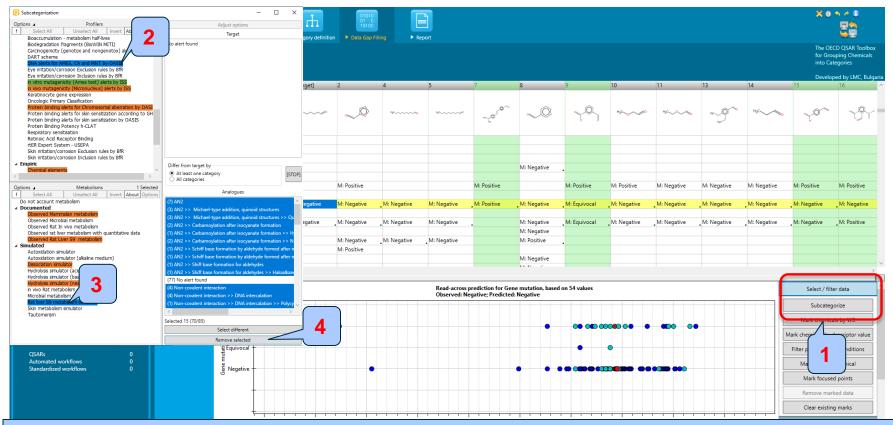
Gap Filling Workfil	w >															CD QSAR Tool Iping Chemica egories
nalysis Read across (Q)SAR Standardized A																ed by LMC, B
Documents Øccument 1 ////////////////////////////////////	Filter endpoint	t tree	•	ا [target] ۲۹۲۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰	2	4	5	7	8	, , O,	10 н ₃ с0	11 Hys	13	14 HgC	15	16
 ○ [C: 96/Md: 10199: 1] Subcate ○ [C: 10Md 1459: 1] Subcat □ [C: 86/Md: 1059;P: 1] Enter GF(RA) 	Genetic Toxicity in Vitro Bacterial Reverse Mutation Assay Excherichia coli Salmonella typhimurium IN 659 Info		/ (e.g 4/8 58/61		M: Positive			M: Positive	M: Negative	• M: Positive	M: Positive	M: Negative	M: Negative	M: Negative	M: Positive	M: Positive
2		Gene mutation Without S9 Gene mutation DNA Damage and Repair Assay, in Vitro Mammalian Chromoso Mammalian Cell Gene Mutation Single Cell Gel Electrophoresis (c.	82/471 U 1/1 13/30 A 4/4	M: Negative R: Negative	M: Negative M: Negative M: Negative M: Positive	M: Negative M: Negative M: Negative	M: Negative M: Negative M: Negative	M: Positive	M: Negative M: Negative M: Negative M: Positive M: Negative	M: Equivocal M: Equivocal	M: Negative	M: Negative	M: Negative	M: Negative	M: Negative	M: Negat
Data Gap Filling Settings Only endpoint relevant	< Descript															:t / filter dat
At this position: QSARs 0 Automated workflows 0 Standardized workflows 0 In nodes below: QSARs 0 Automated workflows 0 Standardized workflows 0	Predicti	Positive Positive Bequivocal Beg Negative			•	•				• • • •)	@-@00000	D0 0 0		Desc Ma Calcul Vis	lling approa riptors / dat odel/QSAR lation option ual options formation
		-12		-10	-5	3	-6	-4	-2 log Kow	0	2		4	6	Mi	scellaneous

Data Gap Filling (Ames with S9) Results of Read across

- As while predicting Ames mutagenicity without S9, before accepting the estimated result for the target chemical by read-across, the user should refined the category by subcategorization.
- Subcategorization refers to the process of applying additional profilers to the previously defined category. This aim to identify the chemicals which have differing profiling results and eventually eliminating these chemicals from the category.
- In this example, we are going to use several different profilers to repeatedly subcategorise the data set.

Data Gap Filling (Ames with S9) Side Bar of Subcategorization

The analogues which are dissimilar to the target chemical with respect to:

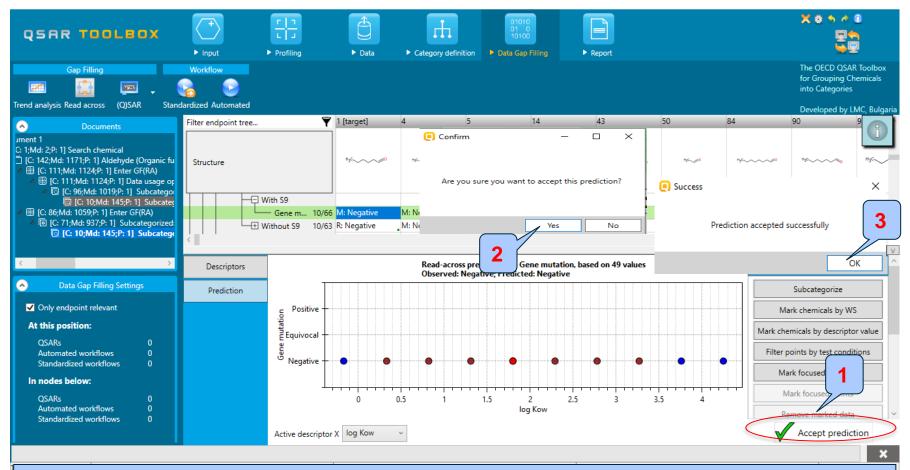

- DNA alerts for AMES, CA and MNT by OASIS (endpoint specific) taking into account in vitro S9 metabolism – The categorization based on this profiler identifies analogues having same DNA binding alerts as the target after metabolic activation

- Organic functional groups (US-EPA) – The categorization based on this profiler identifies analogues having the same organic functional groups

can be removed from the initial list of analogues previously defined by primary group according to OFG (US-EPA) (see slides 49-52).

Data Gap Filling (Ames with S9)

Subcategorization by DNA binding alerts taking into account Rat liver S9 metabolism



Before proceeding with subcategorization, worst-case scenario is applied. **Repeat steps from slide 61**. Once ready with data usage please 1. Go to **Select/Filter data** >>**Subcategorize** 2. Select **DNA alerts from AMES**, **CA and MNT by OASIS** profiler; 3. Combine it with the **Rat liver S9 metabolism** simulator; 4. Click **Remove selected**

Data Gap Filling (Ames with S9) Subcategorization by OFG (US-EPA)

Subcategorization	• • • •	- 🗆 X	Category definition	on 🕨 Data Gap I	Filling 🕨 🕨 Re	port								The Of	CD QSAR Too
Options Profilers f Select All Unselect All Invert	1 Selected	Adjust options												for Gro	uping Chemi Itegories
Select All Unselect All Invert Predefined	About Options	Target													
General Mechanistic		Aldehyde, aliphatic attach [-CHO]	1 [target]	2	4	5	0	10	11	13	14	19	20	24 Develo	ped by LMC, 25
 Endpoint Specific Empiric 	(tic Carbon [CH]	i (target)	2	4	5	•	10		15	14	19	20	24	23
Chemical elements	1	tic Carbon [-CH2-] tic Carbon [-CH3]												~	
Groups of elements Lipinski Rule Oasis		laneous sulfide (=S) or oxide (=O)	HyC	🔍 💭	1/10	15	s Ó	нус	HyC	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Н3С О	HF~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*~_O^	<u>_</u>	
Organic functional groups	<u> </u>	Cremnic carbon [=CH- or =C<]	-	~			~ -			ner		043		n ton	
Organic functional groups (nes Organic functional groups (US	EPA)		M: Negative	M: Negative	M: Negative	M: Negative	M: Negative	_M: Negative	M: Negative	M: Negative	M: Negative	M: Negative	M: Negative	M: Negative	M: Negat
Organic functional groups, Nor Structure similarity	bert Haider (Wit Negative	with regative	. With Negative	wii wegative	. IN: Ivegative	. With Wegative	wi: rvegative	_ivi: ivegative	ivi: rvegative	wi: ivegative	wi: rvegative	_ivit ivegative	wit Negati
Tautomers unstable Toxicological			M: Negative	M: Negative	M: Negative	M: Negative	M: Negative	.M: Negative	M: Negative	M: Negative	.M: Negative	M: Negative	M: Negative	M: Negative	M: Negat
Repeated dose (HESS)	~	Differ from target by		M. Namelia	M. No setting	M. Namelia	M: Negative M: Positive				_	M. Newsfire	M. Nametica		
<	>	At least one category All categories	P]	M: Negative M: Positive	M: Negative	M: Negative	IVI: POSITIVE	•				M: Negative	M: Negative	•	
Options 🖌 Metabolisms	0 Selected						M: Negative								
f Select All Unselect	All Invert	Analogues					M: Negative								
Do not account metabolism Documented		(2) 2,2-bis-(alkoxy)-1-alkanol [COC(C(OH))OC] (2) 2,3,3-Trialkoxy alcohol derivative [HOCC(-O-)C													
Simulated		(1) 3-Amino-2-hydroxycarboxylate deriv. [NCC(OF			_										
		(1) Acid, aromatic attach [-COOH]			_										
		(1) Alcohol, olefinic attach [-OH]													
		(34) Aldehyde, aliphatic attach [-CHO] (35) Aldehyde, aromatic attach [-CHO]													
		(4) Aliphatic Carbon [C]													
	2	(53) Alinhatic Carbon (CH1	·												
		Selected 61 (9/70)				Read-across Observed: N	prediction for Ge legative; Predicte	ne mutation, based d: Negative	i on 51 values					Select / fil	er data
		Select different												Subcate	gorize
		Remove selected												Mark chemic	als by WS
Standardized workflows	0	Positive						•	•	• •	• •		•		
nodes below:		5												Mark chemicals by	descriptor va
OSARs	0	ntati.												Filter points by t	est condition
Automated workflows Standardized workflows	0	뤁 Equivocal +							•					Mark focused	l chemical
standardized worknows	U	Ge												Mark focuse	d points
		Negative	•					•	• • •	• • • • • • • • • • • • • • • • • • •	@@ @@@				
														Remove ma	Ked data
														Clear existir	ig marks
		-9	-8	-7	-6 -5	-4	-3	-2 -1	0	1	2 3	4	5	Gap filling a	pproach
							log	Kow							
		Active descriptor X log Ko	w v											Accep	t prediction
														v	

Data Gap Filling (Ames with S9) Result of read-across

1. Click **Accept prediction** 2. Click **Yes** to accept the prediction 3. Click **No** if you decided to continue with Subcategorization; 3. Click **OK** on the appeared message

Data Gap Filling (Ames with S9) Result of read-across

SAR TOOLBOX 🔿 🔠	Ê H	01 0 1010										
Input Input Profiling Gap Filling Workflow Workflow Image: Standard Standa) ▶ Data ▶ Category definiti	on 🕨 Data Gap Filling	► Report								fc in	ne OECD QSAR To r Grouping Chem to Categories
Documents	Filter endpoint tree	🝸 1 [target]	2	3	4	5	6	7	8	9	D 10	eveloped by LMC, 11
ment 1 1 Md: OP: 2] Search chemical [C: 142;Md: 1171;P: 2] Aldehyde (Organic functional groups) ★ III: (C: 111;Md: 1124;P: 2] Enter GF(RA) ★ III: (C: 111;Md: 1124;P: 2] Data usage options are changed to: Maximal ★ III: (C: 56;Md: 1015;P: 2] Subcategorized: DNA alerts for AMES, CA a III: (C: 56;Md: 145;P: 2] Subcategorized: Organic functional group III: (C: 86;Md: 145;P: 2] Subcategorized: Organic functional group	os (US	Nf~~~~*	~	45-00-00 513	16	15	A.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>_</u> 0	J.O.J	HJC	НуС
Hej [C: /1]Md: 937;P: 2] Subcategorized: DNA alerts for AMES, CA and M [] [C: 10]Md: 145;P: 2] Subcategorized: Organic functional groups (NI by JS EP2 Divironmental Fate and Transport Ecotoxicological Information											
	Human Health Hazards Grade Acute Toxicity Grade ADME	1/1										
	Bioaccumulation Carcinogenicity Developmental Toxicity / Terat											
	Genetic Toxicity		C									
	→ Bacterial Reverse Mutatio Escherichia coli Salmonella typhimuri	4/8		1					M: Negative	•		
Data Gap Filling Settings		87/92	M: Pore				M: Negative	M: Positive		M: Positive	M: Positive	M: Negative
Only endpoint relevant this position:	Gene mutatio	n 87/479 R: Negative M: Negative	M: Negative M: Negative M: Negative		M: Negative	M: Negative M: Negative		M: Positive M: Positive	M: Negative M: Negative M: Negative	M: Equivocal M: Negative M: Negative	M: Negative M: Negative M: Negative	M: Negative M: Negative M: Negative
elect a cell with a rigid (bold) path Nutomated workflows 0 Iandardized workflows 0	Gene mutatio	M: Negative n 112/539 R: Negative	M: Negative M: Negative M: Negative M: Negative		M: Negative	M: Negative M: Negative			M: Negative M: Negative M: Negative	M: Equivocal M: Negative M: Negative	M: Negative M: Negative M: Negative	M: Negative M: Negative M: Negative
	DNA Damage and Repair DNA Damage and Repair in Vitro Mammalian Chro The Mammalian Cell Gene Mi	omoso 16/36	M: Negative M: Positive	M: Negative	M: Negative	_M: Negative			M: Negative M: Positive			
	Single Cell Gel Electropho								M: Negative M: Negative			
	Immunotoxicity Irritation / Corrosion											

The read-across prediction (marked with "R") appears on data matrix under level of AMES with S9 (1). Also the level from documented tree is getting grey highlighted (2), indicating that at this level there is a prediction. The user could continue the workflow with generating the report (see next slides)

Outlook

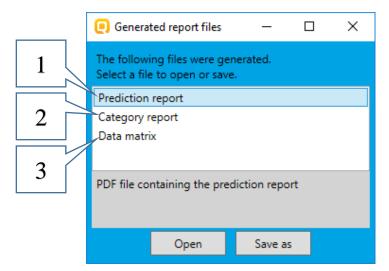
- Background
- Keywords
- Objectives
- Specific Aims
- Read-across
- The exercise

Workflow of the exercise

- Input
- Profiling
- Data
- Category definition
- Data Gap Filling
- Report

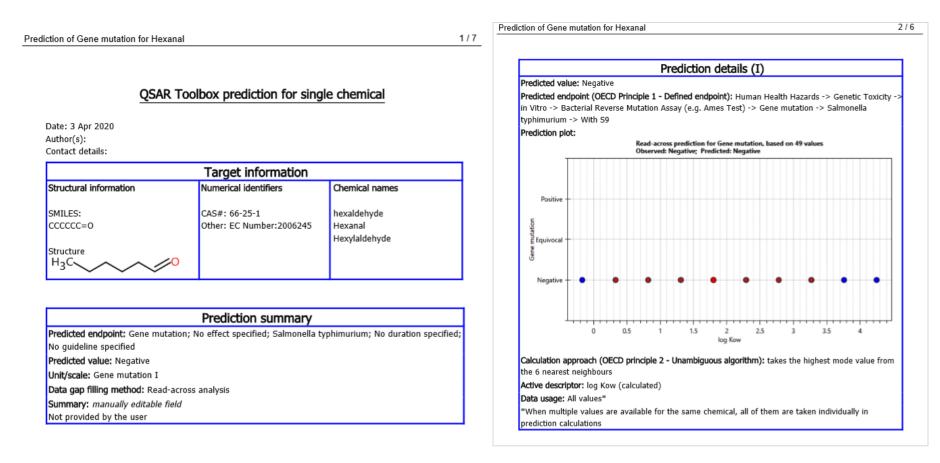
Report Overview

- The Report module allows you to generate a report on the predictions performed within the Toolbox.
- This module contains a predefined report template with automatically populated sections as well as manually editable sections, where the users could add some additional/custom information.
- The Prediction report generates three files: 1) *Prediction report*; 2) *Category report* and 3) *Data matrix*.
- The generated reports can then be saved or just opened.


Report Generate Report

	► Profiling ► Data	Category definition	01010 01 0 10100	Report		Customize report content and a Wizard pages	ppearance Select which sections to include int Rearange sections order of appear			corresponding se d "Move Down".	ction box.
Prediction Data 3 ory QMRF SMI File SDF	Export		1			Customization Customize report	Add RAAF scenario		4		
Documents	Filter endpoint tree	1 [target]	2	3	4	Prediction	✓ Prediction				
Occument 1			~	*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Target and prediction summary Prediction details (I) Prediction details (II) Target profiles Analogues selection details Category Category definition and members Consistency check Options Data matrix Options	 Target and prediction summai Prediction details (I) Prediction details (II) Target profiles Analogues selection details Appendix: Grouping / subcate Appendix: Data pruning Appendix: Specific report expl Category Category definition and memi Consistency check Options Data matrix Options 	orization		Move Up	Move Down
	Gene mutation	R: Negative 87/479 M: Negative	M: Negative M: Negative M: Negative		M: Negative		Remove password prote Note: If the protection is remove			st page of the re	port
	Gene mutation 11	M: Negative 12/539 R: Negative	M: Negative M: Negative M: Negative		M: Negative	M: Negative M: Negative	M: Negative M: Negative M: Negative	Back M: Equivocal M: Negative M: Negative	Next M: M:	Cancel	Create report
1 Co to the Dener	DNA Damage and Repair Assay, U.	1/1		•			M: Negative M: Positive				5
 Go to the <i>Report</i> Click the cell with Click Prediction The user is able to default selections. Click Create rep 	n the read-across button; to Customize the		·	nt. Nov	v kee	p the	M: Negative M: Negative	•			

Report Generation


After clicking *Create report* button, *Generated report files* window appears. It contains three type of files:

- **1) Prediction report** a PDF file containing the prediction information related to the target.
- 2) Category report a PDF file containing information for the consistency of the final category (target plus used analogues)
- **3) Data matrix** a MS Excel file containing chemicals used for prediction along with their data for selected parameters, profiles and endpoint tree positions.

Report Generated report files

Prediction report

Report Generated report files

Category report

	ategory			1/13		
		QSAR Too	blox report for cate	gory		
<u>1. Ca</u>	tegory definition	on				
1.1.	Category defir	nition				
Ca	tegory name			manually editable field		
	Not provided by	the user			A	8
Co	vered (target) e				2 Substance identity	-
		Hazards/Genetic To: n Assay (e.g. Ames ⊺		yphimurium, Gene mutation, Bacterial		
C -			resc), in vicio	manually editable field	Structure	
	tegory hypothes	SIS				
	Not provided by					
	Not provided by	the user			3 4 CAS number	
	Not provided by Category men	the user			4 CAS number 5 Chemical name	
1.2.	Category men	the user n bers			4 CAS number 5 Chemical name 6 Other identifier 7 SMILES	
1.2.	Category men	the user nbers regory members			4 CAS number 5 Chemical name 6 Other identifier 7 SMILES 8 9 Parameters	unit
1.2. In	Category men	the user nbers regory members	SMILES	Structure	4 CAS number 5 Chemical name 6 Other identifier 7 SMLES 8 9 Parameters 10 11 Profilers	unit
1.2. In	Category men formation of cat Table of categor	the user nbers regory members y members	SMILES CCCCCC=0		4 CAS number 5 Chemical name 6 Other identifier 7 MNUES 8 9 Parameters 10 11 Profiles used for 13 Adehyde (Organic functional	groups)
1.2. In	Category men formation of cat Table of categor CAS 66-25-1	the user mbers gegory members y members Name Hexanal	CCCCCC=0	H ₃ C	4 C24 number 5 Chemical name 6 Other identifier 7 SMILES 8 9 Parameters 10 11 Profiles used for	groups)
1.2. In	Category men formation of cat Table of categor CAS	the user nbers egory members y members Name			4 CAS number 5 Chemical name 6 Other identifier 7 SMLRS 8 9	groups) t liver S9
1.2. In	Category men formation of cat Table of categor CAS 66-25-1	the user mbers gegory members y members Name Hexanal	CCCCCC=0	H ₃ C	4 CAS number 5 Chemical name 6 Other identifier 7 MNUES 8 9 Parameters 10 11 Profiles used for 13 Adehyde (Organic functional	groups) t liver S9 i EPA)
1.2. In	Category men formation of cat Table of categor CAS 66-25-1 110-62-3 111-71-7	the user hbers legory members y members Name Hexanal CCCCC=0 Heptanal	0=222222 0=222222 0=2222222	H ₃ C	Conjunter Conjunter Conjunter Objer dentifier	groups) t liver S9 EPA)
1.2. In #	Category men formation of cat Table of categor CAS 66-25-1 110-62-3	the user hbers egory members y members Name Hexanal CCCCC=0	0=222222	H ₃ C	Consultance Constant annue Constant annue Constant annue Constant annue Constant annue Status Profess Profess Profess Profess Profess Profess Constant annue Cons	groups) t liver S9 i EPA) N
1.2. In	Category men formation of cat Table of categor CAS 66-25-1 110-62-3 111-71-7	the user hbers legory members y members Name Hexanal CCCCC=0 Heptanal	0=222222 0=222222 0=2222222	H ₃ C H ₃ C H ₃ C H ₃ C H ₃ C H ₃ C	Consumer Constant and the constant of	groups) t liver S9 i EPA) N
1.2. In [#]	Category men formation of cat Table of categor CAS 66-25-1 1110-62-3 1111-71-7 124-13-0 123-72-8	the user segory members y members Name Hexanal CCCCC=O Heptanal Octanal Butanal	0=2222222 0=2222222 0=2222222 0=22222222	H ₃ C H ₃ C H ₃ C H ₃ C	Conjunter Conjunter Conjunter Other identifier Debrindentifier Debrindentifier Debrindentifier Debrindentifier Debrindentifier Debrindentifier Debrindentifier Organic functional Debrindentifier Debrindentifier Organic functional Debrindentifier Debrindentifier Other bindentifier Debrindentifier Debrindentifier	groups) t liver 59 i EPA) N
1.2. In [#] 1 2 3 4 5	Category men formation of cate Table of categor 66-25-1 110-62-3 111-71-7 124-13-0	the user hbers regory members y members Name Hexanal CCCCC=0 Heptanal Octanal	0=2020202 0=2020202 0=2020202 0=20202020	H ₃ C H ₃ C H ₃ C H ₃ C H ₃ C H ₃ C	Conjunitar Conversional and the conversion of the convers	groups) t liver S9 i EPA) N Sc st) alerts
1.2. In #	Category men formation of cat Table of categor CAS 66-25-1 1110-62-3 1111-71-7 124-13-0 123-72-8	the user segory members y members Name Hexanal CCCCC=O Heptanal Octanal Butanal	0=2222222 0=2222222 0=2222222 0=22222222	H ₃ C H ₃ C	Coll number Coll number Control number	groups) Eliver S9 EPA) N Sc st) alerts INT by
1.2.	Category men formation of cat Table of categor CAS 66-25-1 1110-62-3 1111-71-7 124-13-0 123-72-8	the user segory members y members Name Hexanal CCCCC=O Heptanal Octanal Butanal	0=2222222 0=2222222 0=2222222 0=22222222	H ₃ C H ₃ C	Conjunter Conjunter	groups) t liver S9 i EPA) 1 st) alerts NNT by

manually editable field

Ranges for selected physicochemical properties and calculated parameters Not provided by user

Purity / Impurity

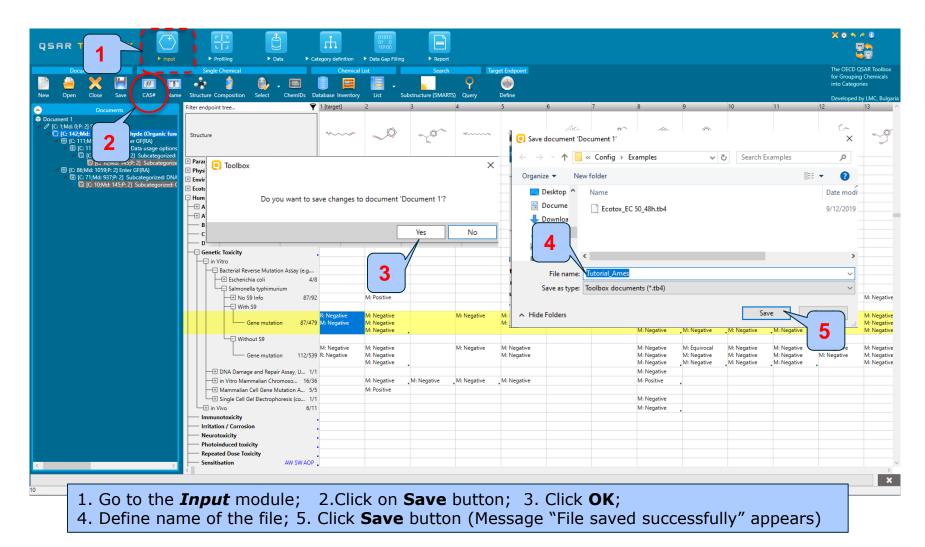
Not provided by the user

1.3. Profiles/Metabolisms

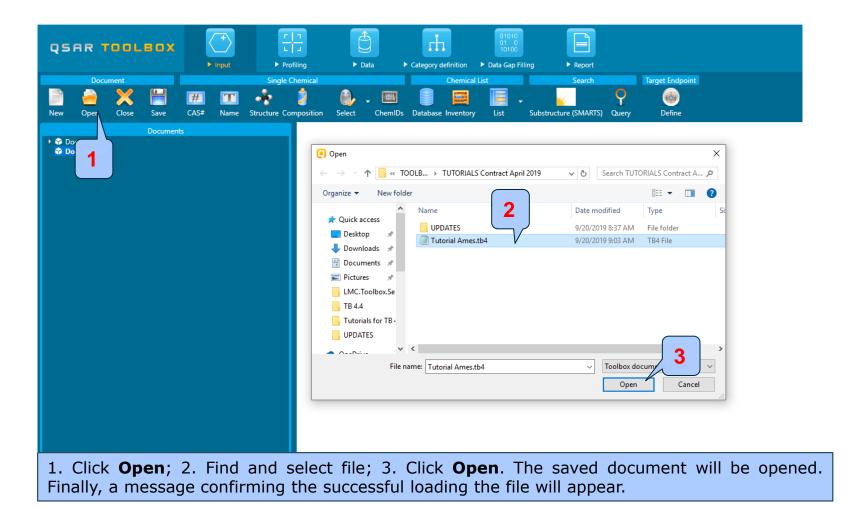
List of profiles/metabolisms

Data matrix report

A 8	C D E		F (1	J	K	L	M	N	0	P	Q	R	S	T	U	V W
	Target chemical			Neighbour #1		N	eighbour #2		N	ighbour #3		Ne	ighbour #4		Ne	ighbour #5		Neighbour #6
Substance identity																		
Structure	Hyc		~~~~~	H3C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		HyC~~~~\$0		H3C			H3C				11)C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
CAS number	66-25-1			110-62-3			111-71-7			124-13-0			123-72-8			123-38-6		124-19-6
Chemical name	Hexanal			CCCCC+O			Heptanal			Octanal			Butanal			Propanal		Nonanal
Other identifier																		
SMILES	0=22222			0=22222			0=2222222		C	0=000000			0=2222			CCC=O		0=222222222
Parameters unit																		
Profilers																		
Profiles used for																		
Aldehyde (Organic functional groups)			Aldehyde		Aldehyde		Aldehyde		Aldehyde		Aldehyde		Aldehyde					
DNA binding by OASIS with Rat liver S9	No alert found			No alert found		No	alert found		No	alert found		No	alert found		No	alert found		No alert found
Aldehyde, aliphatic attach (CHG); Aliphatic Carbon (CH); Subcetegorization) Subcetegorization Missel carbon (CH - CH3); Missel carbon (CH - CH3); Missel carbon (CH - or CH3); Missel carbon (CH - or CH3);		1]; 2-]; 13]; oxide (=0);	Aldehyde, aliphatic attach (-CHO); Aliphatic Carbon [CH]; Aliphatic Carbon [-CH2-); Aliphatic Carbon [-CH2-); Miscellaneous sulfide (=5) or oxide (=0); Olefinic carbon [=CH- or =C<]		Aldehyde, aliphatic attach (-CHO); Aliphatic Carbon (-CH2); Aliphatic Carbon (-CH2-); Aliphatic Carbon (-CH2-); Miscellaneous sulfide (=5) or oxide (=0); Olifinic carbon (=CH- or =C<)		Aldehyde, alighatic attach (-CHO); Alighatic Carbon [CH]; Alighatic Carbon [-CH2-]; Alighatic Carbon [-CH3]; Miscellaneous sulfide [=5] or oxide (=0); Olefinic carbon [=CH- or =C=]		Aldehyde, aliphatic attach (-CHO); Aliphatic Carbon [CH]; Aliphatic Carbon [-CH2-); Aliphatic Carbon [-CH3]; Miscellaneous sulfide (=5) or oxide (=0); Olefinic carbon [=CH- or =C]		Aliphatic Carbon [CH]; Aliphatic Carbon [-CH2-]; Aliphatic Carbon [-CH3]; Miscellanceus sulfide (=5) or oxide (=0) Olefinic carbon [=CH- or =C<]		c Carbon [-CH2-]; c Carbon [-CH3]; sulfide (=5) or oxide (=0);	Aliphatic Carbon [CH]; Aliphatic Carbon [-CH2-]; Aliphatic Carbon [-CH3]; Miscellaneous sulfide (=5) or oxi Olefinic carbon (=CH- or =0				
General Mechanistic																		
DNA binding by OASIS	No alert found			No alert found		P.L.	alert found		No	alert found		No	alert found		No	alert found		No alert found
	Schiff base formers >> Direct A	cting Schiff	Schiff base fr		Schiff he			Schiff ba			Schiff b			Schiff ba			Schiff bas	
DNA binding by OECD	Base Formers >> Mono ald			mers >> Mono aldehydes			rs >> Mono aldehydes			s >> Mono aldehvdes			s >> Mono aldehydes			s >> Mono aldehydes		Formers >> Mono alde
Endpoint Specific																		
in vitro mutagenicity (Ames test) alerts	Simple aldehyde			Simple aldehvde		Sim	ole aldehyde		Sim	ple aldehvde		Sime	ole aldehvde		Sime	ole aldehvde		Simple aldehvde
DNA alerts for AMES, CA and MNT by	No alert found			No alert found			alert found			alert found			alert found			alert found		No alert found
Empiric																		
3 Organic functional groups (nested)	Aldehyde			Aldehyde			Aldehvde			Aldehyde			Aldehvde			Aldehvde		Aldehyde
Measured and predicted data																		
Data used for prediction																		
sublevel poi nt	value unit species, dur type, type a assay, str guideline, yea	of method, rain, test	value un	assay, strain, test guideline, year, reference	value	unit	species, duration, test type, type of method, assay, strain, test guideline, year, reference	value	unit	species, duration, test type, type of method, assay, strain, test guideline, year, reference	value	unit	species, duration, test type, type of method, assay, strain, test guideline, year, reference	value	unit	species, duration, test type, type of method, assay, strain, test guideline, year, reference	value	species, durat type, type of assay, strat guideline, year
Charles Charles				Salmonella						Salmonella								Salmon
Sheet1 (+)										4								


Outlook

- Background
- Keywords
- Objectives
- Specific Aims
- Read-across
- The exercise
- Workflow of the exercise
- Save the prediction


Saving the prediction result

- This functionality allow storing/restoring the current state of Toolbox documents including loaded chemicals, experimental data, profiles, predictions etc., on the same computer.
- The functionality is implemented based on saving the sequence of actions that led to the current state of the Toolbox document and later executing these actions in the same sequence in order to get the same result(s).
- Saving/Loading the file with TB prediction is shown on next screenshots

Saving the prediction result

Open saved file

Congratulations

- By now you should feel comfortable with the six basic modules of the Toolbox and how they form the work flow of the Toolbox.
- In this tutorial you have now been introduced to several additional functions in the Toolbox, especially using different profilers in subcategorizing the category of the target chemical.
- Remember proficiency only comes with practice.