QSAR TOOLEOX

The OECD QSAR Toolbox for Grouping Chemicals into Categories

OECD (Q)SAR Toolbox v.4.4.1

Tutorial on how to predict Skin sensitization potential taking into account alert performance

- Background
- Keywords
- Objectives
- Specific Aims
- Read across and analogue approach
- The exercise
- Workflow

Background

 This is a step-by-step presentation designed to take the Toolbox user through the workflow of a data filling exercise accounting fo alert performance.

- Background
- Keywords
- Objectives
- Specific Aims
- Read across and analogue approach
- The exercise
- Workflow

Keywords

TARGET CHEMICAL - chemical of interest

MODULE – a Toolbox module is a section dedicated to specific actions and options (e.g. Profiling)

WORKFLOW - the use, in combination, of the different modules (e.g. prediction workflow: from input to report)

PROFILER - algorithm (rule set) for the identification of specific features of the chemicals. Several types of profilers are available, such as structural (e.g. Organic functional groups), mechanistic (e.g. Protein binding by OECD) and endpoint-specific (e.g. in vitro in vitro mutagenicity (Ames test) alerts by ISS) profilers.

ALERT - the profilers consist of sets of rules or alerts. Each of the rules consists of a set of queries. The queries could be related to the chemical structure, physicochemical properties, experimental data, comparison with the target or list with substances and external queries from other predefined profilers (reference queries).

CATEGORY – "group" of substances sharing same characteristics (e.g. the same functional groups or mode of action). In a typical Toolbox workflow, it consists of the target chemical and its analogues gathered according to the selected profilers

ENDPOINT TREE – Endpoints are structured in a branched scheme, from a broader level (Phys-Chem properties, Environmental Fate and transport, Ecotoxicology, Human health hazard) to a more detailed one (e.g. EC3 in LLNA test under Human health hazard-Skin sensitization)

ALERT PERFORMANCE – is used to define how much relevant to a target endpoint an alert is. It reflect usability of category formation

DATA MATRIX – Table reporting the chemical(s) and data (experimental results, profilers outcomes, predictions). Each chemical is in a different column and each data in a different row

- Background
- Keywords
- Objectives
- Specific Aims
- Alert performance
- The exercise
- Workflow

Objectives

This presentation demonstrates a number of functionalities of the Toolbox:

- Define target endpoint;
- Relevancy of profiles and data availability;
- Calculation of alert performance (AP).

- Background
- Keywords
- Objectives
- Specific Aims
- Alert performance
- The exercise
- Workflow

Specific Aims

- To introduce to the Toolbox user to the workflow for defining the target endpoint;
- To familiarize the user with the new interface of the Toolbox;
- To familiarize the user with the different highlighting of profiles and databases;
- To familiarize the user with the calculation of alert performance;
- To explain to the Toolbox user the rationale behind each step of the exercise.

- Background
- Keywords
- Objectives
- Specific Aims
- Alert performance
- The exercise
- Workflow

Alert performance Overview

- Alert performance (AP) is used to define how relevant to a target endpoint an alert is;
- AP reflects the alerts usability for category formation;
- AP can be calculated for any endpoint and any profile; one should only have preliminary defined target endpoint;
- AP can be calculate for an alert with or without accounting for metabolism;

- Background
- Keywords
- Objectives
- Specific Aims
- Alert performance
- The exercise
- Workflow

The Exercise

- In this exercise we will illustrate how to calculate alert performance and to use this information for predicting skin sensitization potential (EC3 LLNA assay) for two untested compounds: *pyridaphenthion* [CAS# 119-12-0] and *2-methoxyphenol (guaiacol)* [CAS# 90-05-1] which will be the "target" chemicals.
- We will preliminary define the target endpoint.
- This prediction will be accomplished by calculation of alert performance.
- The category will be defined by the mechanism of protein binding common to all the chemicals in the category.
- The metabolic activation (skin sensitisation metabolism) will be taken into account in the prediction for the second target chemical [CAS# 90-05-1]
- The prediction itself will be made by "read-across".

The Exercise

Theoretical considerations on Skin Sensitization

- Allergic contact dermatitis that results from skin sensitization is a significant health concern.
- Skin sensitization is a toxicological endpoint that is complex and conceptually difficult.
- Many organic chemicals have been shown to induce skin sensitization after covalent binding to skin proteins¹.
- Therefore, mechanisms by which organic chemicals bind with proteins are relevant to grouping chemicals that may be skin sensitizing agents.

¹ OECD (2014), *The Adverse Outcome Pathway for Skin Sensitisation Initiated by Covalent Binding to Proteins*, OECD Series on Testing and Assessment, No. 168, OECD Publishing, Paris, <u>https://doi.org/10.1787/9789264221444-en</u>.

- Background
- Keywords
- Objectives
- Specific Aims
- Alert performance
- The exercise
- Workflow

Workflow

- The Toolbox has six modules which are used in a sequential workflow:
 - o Input
 - o Profiling
 - o Data
 - Category Definition
 - o Data Gap Filling
 - o Report

- Background
- Keywords
- Objectives
- Specific Aims
- Alert performance
- The exercise
- Workflow
 - Input

Input Overview

- This module provides the user with several means of entering the chemical of interest or the target chemical.
- Since all subsequent functions are based on chemical structure, the goal here is to make sure the molecular structure assigned to the target chemical is the correct one.

Input Ways of Entering a Chemical

User Alternatives for Chemical ID:

- A. Single target chemical
 - Chemical Name
 - Chemical Abstract Services (CAS) number (#)
 - SMILES (simplified molecular information line entry system) notation/InChi
 - Drawing chemical structure
 - Select from User List/Inventory/Databases
- B. Group of chemicals
 - User List/Inventory
 - Specialized Databases

Input Screen Input target chemical by CAS#

Exercise 1: CAS 119-12-0

Click **CAS#** (1); Insert CAS **119-12-0** in the blank field (2) and click **Search** (3). When the structure appears, click **OK** (4).

Calculation of alert performance (AP) is only possible if the target endpoint is preliminary defined.

Defining of the endpoint allows entering the endpoint of interest e.g. EC3, LC50, gene mutation etc., along with specific metadata information. Based on the metadata, different relevancy scores for profiles could be provided for the same endpoint.

The OECD (Q)SAR Toolbox for Grouping Chemicals into Categories

On the next step you have to select the endpoint of interest and additional metadata if needed.

Sensitisation		
		1
		1
Organ	Skin	~
Type of method	in Vivo	~
Assay	LLNA	~
Endpoint	EC3	 Selection of additional
		metadata fields:
		Add
		Up
		Clear 7

A new dialogue for defining additional details to the selected target endpoint appears; (1) From the drop-down menus select the specific information for the metadata fields as follows: <u>Endpoint</u> is **EC3**; <u>Organ</u> is **Skin**; <u>Type of method</u> is **in Vivo**; <u>Assay</u> is **LLNA** (2) Click **Finish**

Once the endpoint is defined along with its metadata, they appear in the endpoint tree and the corresponding row of the data matrix is highlighted.

April, 2020

- Background
- Keywords
- Objectives
- Specific Aims
- Alert performance
- The exercise
- Workflow
 - o Input
 - Profiling

Profiling Overview

- "Profiling" refers to the electronic process of retrieving relevant information on the target compound, other than environmental fate, ecotoxicity and toxicity data, which are stored in the Toolbox database.
- Available information includes likely mechanism(s) of action, as well as observed or simulated metabolites.

Profiling Sidebar to profilers' relevancy

Once the endpoint is selected, the relevant profilers and metabolic transformations are highlighted.

- **Suitable** (in green) developed using data/knowledge for the target endpoint;
- **Plausible** (in orange) structure-based; form broader group of analogues;
- **Unclassified** (no color) all profilers, which are not classified in any of the categories above.

Profiling Profiling the target chemical

QSAR TOOLBOX	Image: Profiling ► Data ► Cate	Ategory definition
Profiling Custom profile Apply te		
○ 2	Filter endpoint tree 🍸	1 [target]
 ♥ Document 1	Structure	
Profiling methods Options	Structure info Structure info Parameters Physical Chemical Properties Environmental Fate and Transport Ecotoxicological Information Human Health Hazards Acute Toxicity ADME Bioaccumulation Carcinogenicity Developmental Toxicity / Teratogenicity Genetic Toxicity Irritation / Corrosion Neurotoxicity Photoinduced Dose Toxicity Reneated Dose Toxicity	1. Select Protein binding alerts for skin sensitization by OASIS; 2. Click Apply 3. The profiling results of the target chemical appears in the
	Sensitisation AW SW AOP	data matrix
Chemical elements Groups of elements Keratnocyte gene expression Liphski Rule Oass OECD HPV Ohemical Categories Organic functional groups (US EPA) Organic functional groups (US EPA) Protein binding potency (SH Protein binding potency (SH Protein binding aptency (SH Protein binding alerts for sensitization by OASIS	ToxCast Toxicity to Reproduction Toxicokinetics, Metabolism and Distribution Profiling Endpoint Specific Protein binding alerts for skin sensitization by OASIS	Michael Addition Michael Addition >> Mich Michael Addition >> Mich Schiff base formation

Profiling Profiling the target chemical

Filter endpoint tree 🍸	1 [target]
Structure	
+ Structure info	
+ Parameters	
Physical Chemical Properties	
Environmental Fate and Transport	
Ecotoxicological Information	
🗄 Human Health Hazards	
Profiling	
- Endpoint Specific	
Alert 1	Michael Addition Michael Addition >> Michael addition on conjugated systems with electron withdrawing group Michael Addition >> Michael addition on conjugated systems with electron withdrawing group >> alpha,beta-Carbonyl compounds with polarized double bonds Schiff base formation
Alert 2 -	Schiff base formation >> Pyrazolones and Pyrazolidinones derivatives Schiff base formation >> Pyrazolones and Pyrazolidinones derivatives >> Pyrazolones and Pyrazolidinones SN2
sensitization by UASIS Alert 3	SN2 >> Nucleophilic substitution at sp3 carbon atom SN2 >> Nucleophilic substitution at sp3 carbon atom >> (Thio)Phosphates

Three protein binding alerts for skin sensitization are found in the target chemical.

Profiling Sidebar on the hierarchical type profiles

Protein binding alerts for skin sensitization by OASIS is a hierarchical profile. The organization of the hierarchical profiles includes three levels of information for each category – domain, mechanistic alert and structural alert.

Right-click over the structural alert and select *Explain* to open the profiling scheme, where the user can see more details about the current alert.

- Background
- Keywords
- Objectives
- Specific Aims
- Read across and analogue approach
- The exercise

• Workflow

- $_{\circ}$ Input
- Profiling
- Data

Data Overview

- "Data" refers to the electronic process of retrieving the environmental fate, ecotoxicity and toxicity data that are stored in the Toolbox.
- Data gathering can be executed in a global fashion (i.e., collecting all data for all endpoints) or on a more narrowly defined basis (e.g., collecting data for a single or limited number of endpoints).

Data

Sidebar on Data availability

Once the endpoint is selected, the databases, which contain such type of data, are highlighted in green.

Data Gather data

Data Gather data

- Toxicity information on the target chemical is electronically collected from the selected dataset(s).
- It should be kept in mind that the search for data and analogues (and therefore calculation of AP) is performed only among the chemicals which are listed in the selected databases. In this example only the Skin sensitization database is selected.
- In this example, an insert window appears stating there was "no data found" for the target chemical.

Recap

- In module one, you have entered the target chemical and defined the target endpoint.
- In the second module, you have profiled the target chemical with a profiler, which is suitable for the selected target endpoint.
- In the third module, you have seen the database corresponding to the defined target endpoint. You have found that no experimental data is currently available in the database for the structure.
- In other words, you have identified a data gap which you would like to fill in.
- Click "Category Definition" to move to the next module.
Outlook

- Background
- Keywords
- Objectives
- Specific Aims
- Read across and analogue approach
- The exercise
- Workflow
 - $_{\circ}$ Input
 - Profiling
 - o Data

Category definition

Category Definition Overview

- This module provides the user with several means of grouping chemicals into a toxicologically meaningful category that includes the target molecule.
- This is the critical step in the workflow.
- Several options are available in the Toolbox to assist the user in refining the category definition.

Category Definition Grouping methods

- The different grouping methods allow the user to group chemicals into chemical categories according to different measures of "similarity" so that within a category data gaps can be filled by read-across.
- For example, starting from a target chemical for which a specific protein binding mechanism is identified, analogues can be found which can bind by the same mechanism and for which experimental results are available.

- This is one of the best grouping methods in the Toolbox. It is built on conventional organic chemical reactions and as such is qualitative in character.
- This method is particularly relevant for respiratory and skin sensitization and acute aquatic toxicity, but also for chromosomal aberration and acute inhalation toxicity.

• This scheme includes 112 categories organized in three level of information:

✓ Level I: Mechanistic Domains (11 categories)

- ✓ Level II: Mechanistic alerts associated to each mechanistic domain are created on the basis of a common reactive centre being activated by a number of substituents (50 categories)
- ✓ Level III: A number of structural alerts specifying the substituents to a common reactive center are made up each mechanistic alert (112 categories)

- Each category from level III is presented by defined 2dimensional structural alerts that is responsible for eliciting the toxic effects, such as skin sensitization which are a result of protein binding.
- The associated chemical reactions are in accordance with existing knowledge on electrophilic interaction mechanisms of various structural functionalities.

- There is an agreement that most organic chemicals must react covalently with skin proteins in order to behave as skin sensitizers.
- Therefore, chemical reactions by which organic chemicals bind with proteins are relevant to grouping chemicals that may be skin sensitizing agents. So you have mechanistic plausibility for defining your category based on similar protein-binding mechanism.

Category Definition

 When more than one alert is found in the target structure before or after metabolic activation, Alert performance could be used to define which of them is the most suitable for primary categorization.

Alert performance Overview

The performance of an alert represents the number of chemicals with data related to the predefined scale across all chemicals from the selected databases, which have the same alert. It provides and distribution of data according to a given effect (e.g. positive, negative) in percentages.

	QSAR TOOLBOX	Profiling > Data > Profiling > Data
	Categorize	Category consistency
	 ➢ Documents ➢ Document 1 ➢ Document 2 # [C: 1;Md: 0;P: 0] CAS: 119120 	Filter endpoint tree I [target] Structure I [target] Human Health Hazards I [target] Acute Toxicity I [target]
1	Protein binding alerts for skin sensitization by OASI Options Select All Unselect All Invert Select All Invert Select All Unselect All Invert Select All Invert Select All Invert Select All Select All Invert Select All Organic functional groups Invert Select All Organic functional groups Select Al	1 Selected out Options - 1 Selected out Options - 0 Developmental Toxicity / Teratogenicity - Immunotoxicity - Photoinduced toxicity - Sensitisation AW SWAOP Skin EC3 ToxCast - Toxicity to Reproduction - Toxicity to Reproduction - Profiling -
	Respiratory sensitisation Structure similarity Substance type US-EPA New Chemical Categories Unclassified Acute aquatic toxicity classification by Verhaar (Modified)	1. Select Protein binding alerts for skin sensitization by OA 2. Click Define

After clicking **Define**, the Categorization dialog appears. It consists of all protein binding alerts for SS found in the target structure.

The most suitable alert for category formation is determined by comparison of their alert performance.

Additional section for calculating "Alert performance" is designed in this dialogue, when the endpoint is preliminary defined (see on the next slide).

Alert performance can be calculated for only one alert, for combination of alerts or for all found alerts.

	Grouping options (Protein binding alerts for skin sensitization by OASIS)		_		×
alert 1 -{ alert 2 -{	Target categories Michael Addition Michael Addition >> Michael addition on conjugated systems with electron withdrawing group Michael Addition >> Michael addition on conjugated systems with electron withdrawing group >> alpha,beta-C Schiff base formation Schiff base formation >> Pyrazolones and Pyrazolidinones derivatives Schiff base formation >> Pyrazolones and Pyrazolidinones derivatives >> Pyrazolones and Pyrazolidinones SN2 SN2 SN2 >> Nucleophilic substitution at sp3 carbon atom	arbonyl compounds with po	larized d	ouble bo	nds
	SN2 >> Nucleophilic substitution at sp3 carbon atom >> (Thio)Phosphates				
	Options				
	Down Up Reset	(Options		
	All categories (N/A) Acylation Acylation >> (Thio)carbamoylation of protein nucleophiles Combine profiles Alert performance Scales Calculate				~ ~
		(Л	Can	cel

In order to calculate the performance of an alert, first of all you have to click on **Scales**.

The main purpose of the scales is to unify all data available in the Toolbox databases for a certain endpoint. Therefore, the most appropriate scale is "Skin Sensitisation II (ECETOC)". It is a dichotomous scale that converts all skin data into: Positive and Negative.

Additional option for applying different weight of the data that is available is also provided. Worst case scenario have been taken into account, i.e. "Maximal" data is set as default.

💽 Grouping options (Protein binding alerts for skin sensitization by OASIS) – 🗆 X	end Alert performance options − □ ×
Target categories Michael Addition Michael Addition >> Michael addition on conjugated systems with electron withdrawing group Michael Addition >> Michael addition on conjugated systems with electron withdrawing group >> alpha,bet Schiff base formation Schiff base formation >> Pyrazolones and Pyrazolidinones derivatives Schiff base formation >> Pyrazolones and Pyrazolidinones derivatives >> Pyrazolones and Pyrazolidinones SN2 SN2 >> Nucleophilic substitution at sp3 carbon atom SN2 >> Nucleophilic substitution at sp3 carbon atom >> (Thio)Phosphates 	Aggregation options Categorical scale (ordinal) Maximal Skin sensitisation I (Oasis) Skin sensitization (Danish EPA) Skin sensitization GHS (ordinal) 3
Down Up Reset Options	OK Cancel
All categories (N/A) Acylation Acylation >> (Thio)carbamoylation of protein nucleophiles	
Combine profiles Alert performance 1	

3. Confirm with "**OK**"

II

4. After selection and scale and confirming with **OK**;5. Click **Calculate**;

Grouping options (Prote	ein binding alerts for skin ser	nsitization by OASIS)	_		×
Target categories					
Michael Addition					
Michael Addition >> Mich	nael addition on conjugated	systems with electron with	drawing grou	р	
Michael Addition >> Mich	nael addition on conjugated	systems with electron with	drawing grou	p >> alp	ha,bet
Schiff base formation					
Schiff base formation >>	Pyrazolones and Pyrazolidin	ones derivatives			
Schiff base formation >>	Pyrazolones and Pyrazolidin	ones derivatives >> Pyrazo	olones and Pyr	razolidino	ones
SN2 >> Nucleophilic subs	titution at sn3 carbon atom				
SN2 >> Nucleophilic subs	stitution at sp3 carbon atom	>> (Thio)Phosphates			
Sive 22 Indeeoprine subs	auton at spo carbon atom	>> (mo)Phosphates			
<					>
Options					
Down	Up	Reset	0	ptions	
All categories					
(N/A)					\sim
Acylation					
Acylation >> (Thio)carban	noylation of protein nucleop	hiles			\sim
Combine profiles	Alert performa	nce 5			
	Scales				
	; ocores ;				
● AND ○ OR □ Str	rict				
● AND ○ OR □ Sti	rict rt results Calculate				

Information for the calculated AP for each of the alerts appears in the following window:

	Alert performance results			_	
11. Alert performance is calculated for the	SN2 >> Nucleophilic substitution at sp3 carbon atom >> (Thio) Phosphates <and>Schiff base formation >> Pyrazolones and Pyrazolidinones derivatives >> Pyrazolones and Pyrazolidinones<and>Michae Addition >> Michael addition on conjugated systems with electron withdrawing group >> alpha,beta-Carbonyl compounds with polarized double bonds</and></and>		There were no chemicals with data for the a	alert/category.	
combination of <u>all alerts</u>	SN2 >> Nucleophilic	Positive	100.00%	Show chemicals With data(1)	
2. And for <u>each alert</u>	substitution at sp3 carbon atom >> (Thio)Phosphates	Negative	0.00%	Show chemicals With data(0)	Show all(1)
individually.	Schiff base formation >> Pyrazolones and	Positive	100.00%	Show chemicals With data(3)	
	Pyrazolidinones derivatives >> Pyrazolones and Pyrazolidinones	Negative	0.00%	Show chemicals With data(0)	Show all(3)
	Michael Addition >> Michael addition on conjugated systems with electron	Positive	94.00%	Show chemicals With data(47)	
	withdrawing group >> alpha,beta-Carbonyl compounds with polarized double bonds	Negative	6.00%	Show chemicals With data(3)	Show all(50)
			Close		

Category Definition Calculation of Alert performance for one alert

Michael Addition >> Michael	Positive	94.00%	Show chemicals	
systems with electron withdrawing group >> alpha,beta-Carbonyl compounds with polarized double bonds	Negative	6.00%	Show chemicals With data(3)	Show all(50)

50 analogues having *alpha, beta-Carbonyl compounds with polarized double bonds* have been found in the database.

Of them:

- 47 out of 50 chemicals have positive data (94%)
- 3 out of 50 chemicals have negative data (6%).

Let Keep in mind that the statistic is obtained from the chemicals and data, available in the selected databases

Category Definition Calculation of Alert performance for one alert

In summary we see that the second alert (Schiff base formation >>....>> Pyrazolones and Pyrazolidinones) is the most suitable to define a category (100% positive alert). Read-across prediction is not illustrated in the forthcoming slides

alert 1 – { alert 2 – { alert 3 – {	Grouping options (Protein binding alerts for skin sensitization by OASIS) — X Target categories Michael Addition Michael Addition >> Michael addition on conjugated systems with electron withdrawing group Michael Addition >> Michael addition on conjugated systems with electron withdrawing group >> alpha,bet Schiff base formation Schiff base formation >> Pyrazolones and Pyrazolidinones derivatives SN2	Michael Addition >> Michael addition on conjugated systems with electron withdrawing group >> alpha,beta-Carbonyl compounds with polarized double bonds	Positive 94.00% Negative 6.00%	Show chemicals With data(47) Show chemicals With data(3)
	< Column Up Reset Options	Schiff base formation >> Pyrazolones and Pyrazolidinones derivatives >> Pyrazolones and Pyrazolidinones	Positive 100.00% Negative 0.00%	Show chemicals With data(3) Show chemicals With data(0)
	(N/A) Acylation Acylation >> (Thio)carbamoylation of protein nucleophiles Combine profiles MND O OR Strict Strict Sort results OK Cancel	SN2 >> Nucleophilic substitution at sp3 carbon atom >> (Thio)Phosphates	Positive 100.00% Negative 0.00%	Show chemicals With data(1) Show chemicals With data(0)

Exercise 2: CAS 90-05-1

AP can be also calculated for alert(s) identified in the simulated metabolites after autooxidation simulation or metabolic simulation.

		QSAR TOOLBOX	
1.	Click Profiling (1);	ng Custom profile Apply View New Delete	
2.	alerts for skin sensitization by	Options a 1 Selected f Unselect All invert	
	OASIS and Skin	V Protein binding alerts for skin sensitization by OASIS	
	CASIS and Skill	Destain hinding by OACTC Parameters	
	metabolism simulator	Plausible Physical Chemical Properties Aduatic toxicity classification by ECOSAR Environmental Fate and Transport	
		Chemical elements 2 Ecotoxicological Information	
	(2);	Groups of elements Karthonote energession	
2	Click Area (2)	Acute Toxicity	
3.	CIICK Apply (3).	O ECO HPV Chemical Categories	
		Organic functional groups (nested) Bioaccumulation	
		Organic functional groups (US EPA)	
		Organic functional groups, Norbert Haider (chr / noi)	
		Protein binding potency Oys (DPRA 13%)	
		Metabolism/Trans_smattions Metabolism/Trans_smattions	
		Options	
		f Select All Unselect All Invert Repeated Dose Toxicity	
		Suntable AW SW AOP	
		✓ Skin metabolism simulator ↓ ↓ ♀ Skin	
		Plausible Plausible (shoke making)	
		Hydrolyss simulator (neutral)	
		Uncassified Uncass	
		Hydrolysis simulator (basic)	
	The OECD (Q)SAR Toolbox for Grouping Che	nicals in invivo sat metabolism simulator April, 2020	55

Exercise 2: CAS 90-05-1

The OECD (Q)SAR Toolbox for Grouping Chemicals into Categories

The target chemical has no alert for protein binding as parent but it is activated as a result of skin metabolism. In this respect, the primary category will be defined with accounting for the metabolic activation.

The system will search for chemicals which have similar distribution of the protein binding alerts as identified in the generated package parent and metabolites, accounting for the skin metabolism activation for the analogues.

Category Definition

Alert performance accounting for metabolism

Cancel

OK

The found alerts could be seen by click on the **Edit** button. To calculate AP for one alert – remove all alerts except the alert for which AP will be calculated (three levels of mechanistic information are required – domain, mechanistic and structural alert), select a scale in the **Options** and click on **Calculate** (see next slide).

0					_		×
Target categories Michael Addition Michael Addition >> Michael Addition >> No alert found Schiff base formation Schiff base formation	Michael additic Michael additic >> Schiff base >> Schiff base	in on qinoid type o in on qinoid type o formation with ca formation with ca	compounds compounds >> (rbonyl compour rbonyl compour	Quinone met ds ds >> Aldeh	thide(s)/in nydes	nines; Quir	ioide ox
<							>
Options		Up	Rece	÷		Ontions	
All categories (N/A) Acylation Acylation >> (Thio)ca	rbamoylation o	f protein nucleoph	niles			options	^ ~
Combine profiles AND O OR	Invert result Strict Sort results						
					ОК	Ca	incel

Now we will calculate AP for each of the alerts in order to see which of them is the most suitable for category formation.

	• ×	\bigcirc Grouping with "Protein binding alerts for skin sensitization by OASIS" $ \Box$ $ imes$
1	Target categories Michael Addition Michael Addition >> Michael addition on qinoid type compounds Michael Addition >> Michael addition on qinoid type compounds >> Quinone methide(s)/imines; Quinoide o> No alert found Schiff base formation Schiff base formation >> Schiff base formation with carbonyl compounds Schiff base formation >> Schiff base formation with carbonyl compounds Schiff base formation >> Schiff base formation with carbonyl compounds Schiff base formation >> Schiff base formation with carbonyl compounds Options Down Up Reset Options All categories	You have selected <and> from different hierarchy levels! Selecting most informative level(s) will have the same res Do you want to continue? Do not show this dialog Yes No</and>
	(N/A) Acylation Acylation >> (Thio)carbamoylation of protein nucleophiles Combine profiles Invert result AND O OR Sort results OK Cancel	 Remove <i>No alert found</i> and the second alert by double click or using "Down" button; Click <i>OK</i>. Click <i>OK</i> in the Warning message.

Now we will calculate AP for each of the alerts in order to see which of them is the most suitable for category formation.

QSAR TOOLEOX

Category Definition Calculation of Alert performance accounting metabolism for one alert

Performance of the first alert appears in the following window:

Alert performance results			_		×
Using of "Skin metabolism simulator" Combined parent and	Positive	100.00%	Show chemicals With data(73)		
products requirements: Michael Addition >> Michael addition on qinoid type compounds >> Quinone methide(s)/imines; Quinoide oxime structure; Nitroquinones, Naphthoquinone(s)/imines (Protein binding alerts for skin sensitization by OASIS)	Negative	0.00%	Show chemicals With data(0)	Show al	I(73)
	Clos	e			

The system informs that 73 analogues with the searched alert accounting for skin metabolism have been found. All the chemicals have positive data (100%).

🥼 Keep in mind that the statistic is obtained from the chemicals and data, available in the selected databases

Click on the **Reset (1)** button and repeat the alert performance calculation steps for

the second alert.

					-	-		X
Target categories								
Michael Addition								
Michael Addition	>> Michael ad	dition on qin	ioid type con	npounds				
Michael Addition	>> Michael ac	ldition on qin	ioid type con	1pounds >>	• Quinone r	nethio	de(s)/imi	nes; Q
<					1			>
 Options 			_	\				
Options Down		Up		Reset		0	ptions	
Options Down All categories		Up		Reset		0	ptions	
Options Down All categories (N/A)		Up		Reset		0	ptions	^
Options Down All categories (N/A) Acylation		Up		Reset		0	ptions	^
Options Down All categories (N/A) Acylation Acylation >> (Thi	io)carbamoylat	Up ion of proteir	nucleophile	Reset		0	ptions	~
Options Down All categories (N/A) Acylation Acylation >> (Thi Combine profiles AND O OR	io)carbamoylat	Up ion of protein sult	nucleophile	Reset		0	ptions	~ ~

In summary we see that the first alert (alert 1) is the most suitable to define a category (because of its higher performance).

	Target categories	Positive	100.00%	Show chemicals With data(73)	
alert 1 –	Michael Addition Michael Addition >> Michael addition on qinoid type compounds	Negative	0.00%	Show chemicals	
	Michael Addition >> Michael addition on qinoid type compounds >> Quinone methide(s)/imines; Quinoide oxime No alert found		alert 1	With data(0)	Show all(73)
	Schiff base formation Schiff base formation >> Schiff base formation with carbonyl compounds				
alert 2	Schiff base formation >> Schiff base formation with carbonyl compounds >> Aldehydes				
				r · · · ·	
		Positive	80.12%	Show chemicals With data(137)	
		Negative	19.88%	Show chemicals	

Show all(171).

With data(34)..

alert 2

Right-click on the results (Positive/Negative) (1) to display **Select for primary** grouping, select **Select for primary grouping** (2)

Alert performance results	1		_				
Using of "Skin metabolism simulator" Combined parent and products requirements: Michael Addition >> Michael addition on qinoid type compounds >> Quinone methide(s)/imines; Quinoide oxime structure; Nitroquinones, Naphthoquinone(s)/imines (Protein binding alerts for skin sensitization by OASIS)	Positive Negative	100.00% Select for primary gro 0.00% 2	Show chemicals With data(73) ouping Snow chemicals With data(0)	Show all(73)	15		
Close							

Category Definition Analogues

- Based on the defined category (Michael Addition > Michael addition on quinoid type compounds > Quinone methide(s)/imines; Quinoide oxime structure; Nitroquinones, Naphtoquinone(s)/imines) 152 analogues have been identified (including the target chemical CAS: 90-05-1).
- The Toolbox automatically requests the user to select the endpoint data that should be retrieved.
- The user can either select the specific endpoint or by default choose to retrieve data on all endpoints (see below).

Read data?		×
All endpoints Choose		
	ОК	Cancel

Only Skin sensitization database is selected in this example and we click **OK**.

QSAR TOOLBOX

Category Definition Analogues

1. The Toolbox automatically informs the user for the number of collected data points across the chemicals in the category. Click **OK** to confirm.

Category Definition Summary information for Analogues

73 chemicals with 206 experimental results related to the defined target endpoint are found.

QSAR TOOLEOX	input	Data	Category definition	01010 01 0 10100 • Data Gap Filling	► Report			X 0 5	
Categorize	Category consistency							The OECD for Groupin into Catego	QSAR Toolbox ng Chemicals pries
	Filter endpoint tree	🍸 1 [tai	rget] 2	3	4	5	6	Developed 7	by LMC, Bulgaria 8 ^
Document 1 Document 2 # [C: 1;Md: 1;P: 0] CAS: 90051 [] [C: 152;Md: 347;P: 0] Grouping with metab	Structure			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~¢	n La	arc Corg		<u>, , , , , , , , , , , , , , , , , , , </u>
	Bioaccumulation Carcinogenicity Developmental Toxicity / Tera Genetic Toxicity Immunotoxicity	toge							
	Irritation / Corrosion Neurotoxicity Photoinduced toxicity Repeated Dose Toxicity Sensitisation AW SW AOP Skin Skin			e Cł th av	nemica e numl vailable	l statist ber of c experi	cics pre chemica menta	senting als and I data.) the
		59/59 M: St 6/12	trong sensiti M: Moderat	te sen					
	EC3	73/206					M: 3.5 %		
	+ Miscellaneous + Undefined Assay	52/69 1/1		M: Category B	M: Category A	M: Category A		M: Moderately s	M: Category B
Constain hinding slatte for abia constituation hu AAS	ToxCast	:							→ ×

The OECD (Q)SAR Toolbox for Grouping Chemicals into Categories

Recap

- You have identified two protein binding alerts for the target chemical (2methoxyphenol (guaiacol), CAS 90-05-1).
- You have calculated and compared the alert performance for each of the alerts.
- You have now retrieved in the available experimental results on skin sensitisation (EC3) values for 73 chemicals with the same mechanism of protein binding as the target compound, which were found in the "Skin Sensitisation" database.
- The user can now proceed to the next module; click on "Data Gap Filling".

Outlook

- Background
- Keywords
- Objectives
- Specific Aims
- Read across and analogue approach
- The exercise
- Workflow
 - Input
 - Profiling
 - o Data
 - Category definition
 - Data Gap Filling
Data Gap Filling Overview

- "Data Gap Filling" module give access to five different data gap filling tools:
 - \circ Read-across
 - Trend analysis
 - (Q)SAR models
 - Standardized workflow
 - Automated workflow
- Depending on the situation, the most relevant data gap mechanism should be chosen, taking into account the following considerations:
 - Read-across is the appropriate data-gap filling method for "qualitative" endpoints like skin sensitisation or mutagenicity for which a limited number of results are possible (e.g. positive, negative, equivocal).
 Furthermore read-across is recommended for "quantitative endpoints" (e.g., 96h-LC50 for fish) if only a low number of analogues with experimental results are identified.
 - Trend analysis is the appropriate data-gap filling method for "quantitative endpoints" (e.g., 96h-LC50 for fish) if a high number of analogues with experimental results are identified.
 - "(Q)SAR models" can be used to fill a data gap if no adequate analogues are found for a target chemical.
 - Standardized and Automated workflows are developed to facilitate the users work. Once started, they
 follow the implemented logic and finish with prediction. The general differences between the two type of
 workflows are represented on the next slide.

In this example we will use the manual read-across approach.

Data Gap Filling Apply Read across

Data Gap Filling Apply Read across

Filter endpoint tree 🍸	1 [target]	6	9	11	20	21	26	27	28	29
Structure	Ny Contraction		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*******\$ Č	~~~~~,Č			Hac Constant	HG O
+ Structure info										
Parameters										
Physical Chemical Properties										_
Environmental Fate and Transport										
Ecotoxicological Information					L					
🖵 Human Health Hazards				1						
Acute Toxicity										
- + ADME										
Bioaccumulation	. 📃 Inform	ation			ı ×					
Carcinogenicity										
Developmental Toxicity / Teratogenicity										
Genetic Toxicity	. 7 ob	served values for 5	chemicals were exe	cluded due to missi	ng X					
Immunotoxicity			descriptor value(s)							
Irritation / Corrosion										
Neurotoxicity										
Photoinduced toxicity				2	OK					
Repeated Dose Toxicity				-						
Sensitisation AW SW AOP										
Skin										
- in Vivo										
	M: Strong sensiti				M: Strong sensiti	. M: Strong sensiti.				
HRIPT 6/12				M: 4.02E+03 µg/						
EC3 68/199		M: 3.5 %	M: 0.355 %	M: 16.4 %	M: 0.3 %	M: Strongly posit.	. <mark>.</mark> M: 5.79 %	M: 0.32 %	M: 0.6 %	M: 7.49 %
→ Miscellaneous 11/20			M: Moderately s							
ToxCast										

1. The Toolbox informs the user that 7 observed values for 5 chemicals were excluded due to missing X descriptor values. The reason for exclusion is that log Kow for these chemicals cannot be calculated (most probably these are mixtures, UVCB substances or some metal containing chemicals for which EPISUITE program cannot return result). The log Kow is the default X-descriptor for the read-across approach. 2. Click **OK**.

Data Gap Filling Apply Read across

QSA	 Qubcatego Options ↓ f Select 	orization Profiler t All Unselect All	rs 1 Si Invert About	elected	Adjust options	a	Category def	0101 01 1010 inition Data Gap	o o o Filling	Report						× • • •	
	 Predefine Databa Invent 	ed ase Affiliation tory Affiliation HPV Chemical Categori		Î	Phenols (Acute tox											The OECD Q for Grouping into Categori	SAR Toolbox Chemicals es
Trend analysi	Substa US-EP/ ∡ General M	ance type A New Chemical Categ Mechanistic		2			Ŷ	1 [target]	6	9	11	20	21	26	27	Developed b	29
⊿ # [(⊿ # [[Biodeg Biodeg Biodeg Biodeg Biodeg Biodeg Biodeg) BIOHC hair-line (BIOWIN gradation primary (Biow gradation probability (Bi gradation probability (Bi gradation probability (Bi gradation probability (Bi gradation probability (Bi) iowin 1) iowin 2) iowin 5) iowin 6) iowin 7)		< >>			ns Q	46-09	~ <u>```</u> `@_@	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	**************************************	×	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	, je.	140000 C	
	Biodeg	radation ultimate (Biov	win 3)	>	At lea [STOP]		19/1	M: Strong sensiti				M: Strong sensiti	. M: Strong sensiti				
	Options 🖌	Metabolism	is O S	elected		1	6/1	2			M: 4.02E+03 µg/						
	f S	elect All count metabolism	Unselect All	Invert	(3) Aldehydes (Acu		68/19	•	M: 3.5 %	M: 0.355 %	M: 16.4 %	M: 0.3 %	M: Strongly posit.	M: 5.79 %	M: 0.32 %	M: 0.6 %	M: 7.49 %
	Documen Observ Observ Observ Observ Observ Observ Observ	nted ved Mammalian metabo ved Microbial metabolisi ved Rat In vivo metabo ved rat liver metabolism ved Rat Liver S9 metal d	olism m olism n with quantitative d bolism	lata	(20) Anilines (Acute (4) Esters (Acute to (1) Esters (Chronic (1) Neutral Organic (11) Not categorize	ion iolism and	11/20	•		M: Moderately s.	"• 						
<	Autoxi Autoxi Dissoci	idation simulator idation simulator (alkalir iation simulator	ne medium)		(38) Phenols (Acute (2) Polynitroaroma	nical Cate	gories	Phenols (Acute t	Esters (Acute tox.	. Not categorized	Aldehydes (Acut	Esters (Chronic t	Esters (Acute tox	Polynitroaromati	Esters (Acute tox.	Phenols (Acute t	^{Ar} 1
✓ Only At this	Hydroly Hydroly in vivo	ysis simulator (acute) ysis simulator (basic) ysis simulator (neutral) Rat metabolism simulai	tor 3	s	elected 42 (26/68) Select different]			R	lead-across predic redicted: Positive	tion for EC3, based	on 14 values				Select / filter dat	•
QSAR Auton Stand	Microbi mated workflow lardized workflo	ial metabolism simulato /s ows	0 0		Remove selected	Positive -						•	• 🚥 •	•	••••••	Subcategorize Mark chemicals by	WS
In node	es below:														Mark	chemicals by descri	ptor value
QSAR Auton	ls mated workflow	/S	0 0		ŝ										Filt	er points by test cor	nditions
Stand	lardized workflo	ows				Negative -	_									Mark focused chem	nical
																Mark focused poi	nts
						l	-2	-1	0	-i i i i i 1	2	3	4 5	6	····	Remove marked d	ata
		1. Go	to Sel	ect	/filte	r da	ata	and cli	ck Si	ubcat	egori	7 81					liction
			act the					'homi		ator	orioc	nrofil	ori			Accept prec	action
		3. Clic	k Rer	nov	/e sel	ect	ed	menn	CarC	ateg	unes	prome	=,				

QSAR TOOLEOX

Data Gap Filling Apply Read across

Subcategorization	1		- 0	\times
Options 🖌	Profilers	1 Selected	Adjust options	
f Select All	Unselect All Invert	About Options	Target	
Groups of elen	nents	^	larget	
Lipinski Rule O	asis	1	Aliphatic Carbon [CH]	
Organic function	onal groups		Aliphatic Carbon [-CH2-]	
Organic function	onal groups (IIS EPA)	-	Aliphatic Carbon [-CH3]	
Organic functi	onal groups, Norbert Haider (c	heckmol)	Aromatic Carbon [C]	
Structure simil	arity		Hydroxy, aromatic attach [-OH]	
Tautomers un	stable		Oxygen, one aromatic attach [-O-]	
Toxicological	- (11565)			
Repeated dos	e (HESS)			
Example Priorit	rization Scheme (PBT)			
p-benzoquinor	1e precursors			
Precursors of 1	1,2,4-TCB			
Precursors of p	primary diamines			
Skin sensitisati	on for DASS			
Test new prof	filer	\sim	Differ from target by	
<		>	At least one category	[STOP]
e .:				
f Select A	Metabolisms II Unselect Al	U Selected	Analogues	
Do not account m	netabolism	^	(20) Aliphatic Carbon [CH]	~
Documented			(20) Aliphatic Carbon [-CH2-]	
Observed Marr	nmalian metabolism		(17) Aliphatic Carbon [-CH3]	
Observed Micro	obial metabolism		(4) Aliphatic Nitrogen, one aromatic attach [-N]	
Observed Rat	iver metabolism with quantitat	ive data	(2) Amino, aliphatic attach [-N<]	
Observed Rat	Liver S9 metabolism		(1) Amino, aliphatic attach [-NH2]	
∡ Simulated			(26) Aromatic Carbon [C]	
Autoxidation s	imulator		(2) Azo [-N=N-]	
Autoxidation s	imulator (alkaline medium)		(1) Carbonyl alighatic attach [-C(-O)-]	
Hydrolysis sime	lator (acidic)		(1) Carbonyl, aliphatic attach [-C(=O)-]	
Hydrolysis simu	lator (basic)		(1) Carbonyi, olelinic attach [-C(=O)-]	
Hydrolysis simu	llator (neutral)		(2) Carbonyi, one aromatic attach [-C(=O)-]	\sim
in vivo Rat me	tabolism simulator		Selected 19 (7/26)	
Microbial metal	bolism simulator			
skin metabolio	etadolism simulator m simulator		Select different	
Tautomerism	ITT SITTUIDEUT	\sim	Remove selected	1

Select the Organic functional groups (US EPA) profiler; Click Remove selected

Data Gap Filling Accepting the predicted result

Data Gap Filling Accepting the predicted result

QSAR TOOLBOX	► Input	□ □ □ □	► Data	► Category defin	01010 01 0 10100 • Data Gap Filling	► Report					× •		
Gap Filling	Workflow										The OE for Gro into Ca Develo	CD QSAR Toolbox ouping Chemicals ategories oped by LMC, Bulgari	
Documents		Filter endpoi	int tree	Ŧ	1 [target]	2	3	4	5	6	7	8	
	with metabolism: Prc A) regorized: US-EPA Nev tegorized: Ornapic fu	Structure			Hyc		"" "" ""		ž	10 -01	~~~~~	~ <u>``````0,0</u>	
	and a second second	Structure	Structure info										
		🛨 Paramete	ers										
		Physical	Chemical Properties										
		Environm	nental Fate and Transpo	rt									
		Ecotoxico	ological Information										
			Tealth Hazards										
			E										
		Bioac	cumulation										
		Carci	nogenicity										
		Devel	lopmental Toxicity / Ter	atogenicity									
<	>	Gene	tic Toxicity										
Data Gap Filling Setting		Immu	unotoxicity										
		Irritat	tion / Corrosion										
Only endpoint relevant		Neuro	otoxicity										
At this position:		Photo	oinduced toxicity										
Select a cell with a rigid (hold) path		Repea	ated Dose Toxicity										
Automated workflows	0	- Sensi	tisation	AW SW AOP									
Standardized workflows			kin										
			-) in Vivo		M. Change and March	M.M. double and							
				5//5/	WI: Strong sensitizer	M: Moderate sen.							
				0/12		_							
			EC2	74/207	R: Positive					M:35%			
			+ Miscellaneous	52/69			M: Category B	M: Category A	M: Category A		M: Moderately s	M: Category B	
			+ Undefined Assav	1/1					, , , , , , , , , , , , , , , , , , ,				
			ast										
		Toxici	ity to Reproduction										
		+ Toxic	okinetics, Metabolism a	nd Distribution								,	
		<										>	
												×	

Recap

- Read-across is the appropriate data-gap filling method for "qualitative" endpoints like skin sensitisation. Since the most of the analogues and all five neighbouring tested chemicals in the category were positive, it was easy to accepting the prediction of positive for the target chemical.
- You are now ready to complete the final module and to create the report.
- Click on "Report" to proceed to the last module.

Outlook

- Background
- Keywords
- Objectives
- Specific Aims
- Read across and analogue approach
- The exercise

• Workflow

- Chemical Input
- Profiling
- Endpoint
- Category definition
- Data Gap Filling
- Report

Report Overview

- The report module can generate reports of predictions performed with the Toolbox.
- The report module contains a predefined report template which users can customize.

Report Generation report

QSAR TOOLBOX	(+)	·#	Ê H		01010 01 0 10100		1		×	• • • • 22	
	Input	Profiling	Data Category de	finition 🕨 🕨 Data	Gap Filling	Report	T			<u></u>	
Reports	Export								The	OECD QSAR To	oolbox
R. R. R. R				•	Customize report cor	ntent and appearance			-		icals
Prediction Lata Matrix Category QMRF SM Documents	I File SDF File CAS	List Data Matrix		1 [target]	Wizard pag	Jes Select w section Rearang	which sections to includ box. Je sections order of app	e into report by chec pearance by using bu	king/unchecking the o ttons "Move Up" and	orresponding "Move Down".	Bulgaria 7 ^
▲ ♥ 3 : 0;P: 1] CAS: 90051 - 1:0;C: 69/Md: 345;P: 1] Grouping w ▲ ⊞ (C: 69/Md: 250;P: 1] Enter GF(RA	ith metabolism: Prc)	Structure		HyCL	ustomization Customize repo	ort A	dd RAAF scenai	rio			24
⊿ 🔯 [C: 27;Md: 132;P: 1] Subcate	gorized: US-EPA Nev				Target and prod	liction	ediction	2020/			
[Q] [C: 8;Md: 44;P: 1] Subcat	egorized: Organic fu	Physical Chemical Pre	operties		summary	V Pre	ediction details (I)	indiy			
		🗄 Environmental Fate a	nd Transport		Prediction detail	ils (I)	ediction details (II)				
		🗄 Ecotoxicological Info	rmation		Des disting datai	Tar	get profiles				
		📮 Human Health Hazar	ds		Prediction detai	IIS (II)	alogues selection detai	ils			
		Acute Toxicity			Target profiles	Ap	pendix: Grouping / sub	categorization			
		- + ADME		· ·	Analogues selec	ction 🗌 Ap	pendix: Data pruning				
		Bioaccumulation			details	Ap	pendix: Specific report	explanations			
		Carcinogenicity		. c	ategory	🗹 Cat	tegory				
		Developmental Te	oxicity / Teratogenicity	· · · ·	Category definit	tion 🔽 Cat	tegory definition and n	nembers			
		Genetic Toxicity		· · · ·	and members	Con	nsistency check				
		Immunotoxicity		· ·	Consistency che	eck ☑ Op	tions				
		Irritation / Corros	ion		Options	🗹 Dat	ta matrix				
		Photoinduced to	icity.	·	ata matrix	🗸 Op	tions				
		Repeated Dose To	ncity		Options						
			AW SW AOF						Move Up	Move Down	
		Skin G Skin G in Vivo	57/5	7 Mi Strong s	_	Ren Note: If report	nove password p the protection is ren	rotection of the noved, this will be	PDF files. specified in the first	page of the	4
			6/1	2		2	Back	< Next	Cancel	Create report	
			0/1			4					
		ECS	74/20	7 R: Positive						M: 3.5 %	
			(e	59		3	M: Category B	M: Category A	M: Category A		Þ
Co to the Bonart m	odulor			/1							

- 1. Go to the <u>**Report**</u> module;
- 2. Click on the cell with the read-across prediction;
- 3. Click **Prediction**;
- 4. Click Create report.

Report Generation report

After clicking **Create report** button, *Generated report files* window appears. It contains three type of files:

- 1) **Prediction report** a PDF file containing the prediction information related to the target.
- 2) **Category report** a PDF file containing the justification for the consistency of the category with respect to the defined endpoint.
- 3) **Data matrix** a MS Excel file containing chemicals used for prediction along with their data for selected parameters, profiles and endpoint tree positions.

Report Generated report files

Prediction report

Prediction of EC3 for guaiacol

1/8

QSAR Toolbox prediction for single chemical

Date: 15 Apr 2020 Author(s): Contact details:

Target information													
Structural information	Numerical identifiers	Chemical names											
SMILES: COc1ccccc10 Structure H ₃ C	CA5#: 90-05-1 Other: EC Number:2019647	"2-methoxyphenol (gu aiacol);guaiacol;phe nol, 2-methoxy-;2-me thoxy-phenol;2-metho xyphenol;0-methoxyph enol;0-methoxypheno l;phenol, 0-methoxy- ;guaiacol [jan]" 2-methoxy-phenol 2-Methoxyphenol											

Prediction summary

Predicted endpoint: EC3; No effect specified; No species specified; No duration specified; No guideline specified Predicted value: Positive Unit/scale: Skin sensitisation II (ECETOC) Data gap filling method: Read-across analysis Summary: manually editable field Not provided by the user

Category report

QSAR Toolbox report for category

1. Category definition

1.1. Category definition	
Category name	manually editable field
Not provided by the user	
Covered (target) endpoint(s) - Human Health Hazards/Sensitisation: EC3, LLNA, in Vivo, Skin	
Category hypothesis	manually editable field
Not provided by the user	
1.2. Category members	
Information of category members	

Table of category members

#	CAS	Name	SMILES	Structure
1	90-05-1	guaiacol	COcicccc10	Н3С ОН
2	452-86-8	4-Methylcatechol	Cc1ccc(0)c(0)c1	Н3С ОН
3	488-17-5	3-methylcatechol	Cc1cccc(0)c10	H ₃ C OH
4	123-31-9	p-Quinol	Oc1ccc(O)cc1	НО
5	108-46-3	resorcin	Oc1cccc(0)c1	но он

Report Generated report files

Data matrix report

			_																	
		Та	rget chemical		Nei	ghbour #1		Ne	ighbour #2		Ne	ighbour #3	Neighbour #4			Neighbour #5				
Substance identity																				
Structure	Hys			нустон			H ₃ C-OH OH			но				но	Ô, or	но он				
CAS number			90,05,1		4	52,86,8	488.17.5			123,31,9				108-46-3		87-66-1				
Chemical name			guaiacol		4-Met	thylcatechol		3.me	thylcatechol			n-Quinol	resorcin				Pyrogallol			
Other identifier			20010001			infredection		2 1110	infredection			p quiller			-coorem			, oganor		
SMILES			0c1ccccc10		Cele	cc(0)c(0)c1		Cel	lecce(0)e10		0-1(0)1			00	1cccc(0)c1		Oc1	cccc(0)c10		
SIMILLO			ociteteio			celolelole1						1000/001		00	10000/01			ccciolero		
Deafilers																				
Profilers																				
Profiles used for grouping/subcategorization Parent and 4 metabolised Has all of the required catego Gompound, Nichael Addition (Nichael Addition Compounds, Nichael Addit		nd 4 metabolite(s); re required categories: tion, Michael Addition >> didition on qinoid type sunda >> Quinone mines; Quinoid type sunda >> Quinones, quinone(s), finite as to bler tound, Schiff base to bler tound, Schiff base formation with carbonyl sormation with carbonyl unda >> Aldebydes	 Parent and 2 metabolite(s); Has all of the required categories: Michael addition, Michael Addition >> Michael addition on qinoid type compounds, Michael Addition >> Michael addition on qinoid type compounds >> Quinone methide(s)(innies), Quinode oxime estructure; Nitroquinones, Naphthoquinone(s), Nimies; Has the following additional categories: No alert found 			Parent and 2 metabolite(s); Has all of the required categories: Michael Addition >> Michael addition on qinoid type compounds >> Quinone methide(s)(mines; Quinoide oxime structure; Nitroquinones; Naphthoquinone(s)/imines; Has the following additional categories: No alert found			Parent and 1 matabolite[s]; Has all of the required categories: Michael Addition, Michael Addition >> Michael addition on ginoid type compounds, Michael Addition >> Michael addition on ginoid type compounds >> Quinone mathide[s][mines; Quinoide oxime structure; Nitroquinone[s][mines; Has the following additional categories: No alert found			Parent and 9 metabolite(s):; Has all of the required categories: litcheal Addition >> Michael addition on arioid type compound, Michael Addition >> Michael addition on arioid type compound >> Quinone methide(s)/imines; Quinoide oxime structure; Nitroquinones, Naphthoguinone(s)/imines; Has the following additional categories: No alert found			Parent and 5 metabolite(s); Has all of the required categories: Michael Addition >> Michael addition on qinoid type compound, Michael Addition >> Michael addition on qinoid type compound >> Quinos methide(s)/imines; Quinoide outme structure, Nitroquinones, Naphthoquinone(s)/mines; Has the following additional categories: No alert found					
US-EPA New Chemical Categories		Pheno	Is (Acute toxicity)	Phenols (Acute toxicity)		Phenols (Acute toxicity)		Phenols (Acute toxicity)		Phenols (Acute toxicity)			Phenols (Acute toxicity)							
Organic functional groups (USEPA) (subcategorization)		Aliphatic Carbon [CH]; Aliphatic Carbon [-CH2-]; Aliphatic Carbon [-CH3]; Aromatic Carbon [C]; Hydroxy, aromatic attach [-OH]; Oxveen, one aromatic attach [-O-I];		Aliphatic Carbon [CH]; Aliphatic Carbon [-CH2-]; Aliphatic Carbon [-CH3]; Aromatic Carbon [C]; Hydroxy, aromatic attach [-OH]; Oxygen, one aromatic attach [-O-]			Aliphatic Carbon [CH]; Aliphatic Carbon [-CH2-]; Aliphatic Carbon [-CH3]; Aromatic Carbon [C]; Hydroxy, aromatic attach [-OH]; Oxygen, one aromatic attach [-O-]			Aromatic Carbon [C]; Hydroxy, aromatic attach [-OH]; Oxygen, one aromatic attach [-O-]			Aromatic Carbon [C]; Hydroxy, aromatic attach [-OH]; Oxygen, one aromatic attach [-O-]			Aromatic Carbon [C]; Hydroxy, aromatic attach [-OH]; Oxygen, one aromatic attach [-O-]				
Endpoint Specific																				
Protein binding alerts for skin sensitization	n by																			
Measured and predicted data																				
Data used for prediction																				
sublevel endpo	int val	ue unit	species, duration, test type, type of method, assay, strain, test guideline, year, reference, database	value	unit	species, duration, test type, type of method, assay, strain, test guideline, year, reference, database	value	unit	species, duration, test type, type of method, assay, strain, test guideline, year, reference, database	value	unit	species, duration, test type, type of method, assay, strain, test guideline, year, reference, database	value	unit	species, duration, test type, type of method, assay, strain, test guideline, year, reference, database	value	unit	species, duration, test type, type of method, assay, strain, test guideline, year, reference, database		
Sensitisation EC3				Strongl y positiv e	Skin sensiti sation I (Oasis)	Test organisms (species): mouse Endpoint: EC3 Type of method: in Vivo Assay: LLNA Year: 2002 Reference source:	1	96	Test organisms (species): mouse Endpoint: EC3 Type of method: in Vivo Assay: LLNA Year: 2005 Reference source:	1.67	96	Test organisms (species): mouse Endpoint: EC3 Type of method: in Vivo Assay: LLNA Year: 1999 Author: Lea	5.92	%	Test organisms (species): mouse Endpoint: EC3 Type of method: in Vivo Assay: LLNA Year: 2008 Author: ICCVAM, 2008.	1.4	96	Test organisms (species): mouse Endpoint: EC3 Type of method: in Vivo Assay: LINA Author: Submitted by National Toxicology		

Congratulations!

- You have now been introduced to the definition of target endpoint;
- You have now been familiarized with the meaning of the different colouring of the profilers and databases.
- You have now been introduced to the consecutive steps of the calculation of alert performance.
- Note, proficiency comes with practice!