QSAR TOOLEOX

The OECD QSAR Toolbox for Grouping Chemicals into Categories

OECD (Q)SAR Toolbox v.4.4.1

Example for predicting Skin Sensitization of a mixture with known components

- Background
- Keywords
- Objectives
- The exercise
- Workflow
- Save the prediction

Background

This is a step-by-step presentation designed to take the user of the Toolbox through the workflow for prediction of skin sensitization of a mixture.

- Background
- Keywords
- Objectives
- The exercise
- Workflow
- Save the prediction

Keywords

TARGET CHEMICAL - chemical of interest, in this case it is a mixture with defined components

MODULE – a Toolbox module is a section dedicated to specific actions and options (e.g. Profiling)

WORKFLOW – the use, in combination, of the different modules (e.g. prediction workflow: from input to report)

PROFILER - algorithm (rule set) for the identification of specific features of the chemicals. Several types of profilers are available, such as structural (e.g. Organic functional groups), mechanistic (e.g. Protein binding by OECD) and endpoint-specific (e.g. in vitro in vitro mutagenicity (Ames test) alerts by ISS) profilers.

ALERT - the profilers consist of sets of rules or alerts. Each of the rules consists of a set of queries. The queries could be related to the chemical structure, physicochemical properties, experimental data, comparison with the target or list with substances and external queries from other predefined profilers (reference queries).

CATEGORY – "group" of substances sharing same characteristics (e.g. the same functional groups or mode of action). In a typical Toolbox workflow, it consists of the target chemical and its analogues gathered according to the selected profilers

ENDPOINT TREE – Endpoints are structured in a branched scheme, from a broader level (Phys-Chem properties, Environmental Fate and transport, Ecotoxicology, Human health hazard) to a more detailed one (e.g. EC3 in LLNA test under Human health hazard-Skin sensitization)

DATA MATRIX – Table reporting the chemical(s) and data (experimental results, profilers outcomes, predictions). Each chemical is in a different column and each data in a different row

- Background
- Keywords
- Objectives
- The exercise
- Workflow
- Save the prediction

Objectives

 This presentation reviews a number of functionalities of the Toolbox:

- 2D editor for defining Mixture components
- Filling data gaps by Independent mode approach

- Background
- Keywords
- Objectives
- The exercise
- Workflow
- Save the prediction

Exercise

- \succ In this exercise we will:
 - predict skin sensitization of target substance, which represent a mixture with defined constituents
 - Investigate the mode of action for each component of the mixture,
 - Gather available experimental data for target chemical,
 - Investigate skin sensitization of non-tested component,
 - Apply read across for non-tested component, and
 - Predict skin sensitization potential of mixture based on experimental data of tested compounds and predicted data of non-tested one.
- \succ The target substance will consists of three constituents:

- Background
- Keywords
- Objectives
- The exercise
- Workflow
- Save the prediction

Workflow

- The Toolbox has six modules which are used in a sequential workflow:
 - Input
 - Profiling
 - Data
 - Category Definition
 - Data Gap Filling
 - Report

- Background
- Keywords
- Objectives
- The exercise
- Workflow
 - Input

Chemical Input Overview

- This module provides the user with several means of entering the chemical of interest or the target chemical.
- Since all subsequent functions are based on chemical structure, the goal here is to make sure the molecular structure assigned to the target chemical is the correct one.

Chemical Input Ways of Entering a mixture

User alternatives for defining mixtures with known compositions:

- A. Single target substance
 - Chemical Name
 - Chemical Abstract Services (CAS) number (#)
 - SMILES (simplified molecular information line entry system) notation/InChi
 - Drawing mixture constituents and defining their quantities
 - Select from User List/Inventory/Databases

B. Group of chemicals

- User List/Inventory
- Specialized Databases

Chemical Input Input Screen

Input Input a mixture

- In the current example our target substance will be a mixture.
- We will draw its components within the "Composition" tool.

Chemical input Input target substance by drawing

QSAR 1001	Imput Profiling
Document Image: Close Save Image: Close CAS# Documents Documents Image: Close Save CAS# Document 1 Image: Close Save Save<	Single Chambel Name Structur Composition Select C 2 Constituents (0) Impurities (0) Additives (0) Constituents (0) Impurities (0) Additives (0) 4 Add Remove
-	ition; In editor select type: Multiconstituent; For to add constituent. Our target substance consists of three constituents, so

QSAR TOOLEOX

Chemical input

Constituent 1

Drawing Constituent 1 of the target mixture

		2D Editor - - ×
Composition editor	2	SMILES/inchi v 0
	CAS:	
	Type: Multiconstituent Name:	Rectangle ·
	IUPAC: Synonyms:	
	SMILES:	Clear All ×
	urities (0) Additives (0) Identity	C OH2
OH ₂	CAS:	Want to clear everything?
	IUPAC: Synonyms: Edit SMILES: O Edit	F P
1	Concentration 1	CL Br
	Concentration range	OK Cancel
	v v Family: Mass Unit: v	
	ОК	Cancel

- 1. Click **Edit** on the SMILES row to define the structure of the first constituent;
- 2. The 2D editor appears;
- 3. Click the **Clean button** to clean everything.
- 4. Confirm with **Yes**.

Constituent 1

Drawing Constituent 1 of the target mixture

2D Editor		– 🗆 X
\odot		
Smiles ~ CCCCO		X
Snap Line	Object explor	er X
	Atom: O	
▶ 2		
	1	
	Element:	0 ~
C H3C CH	Charge:	0 ~
Ν	- Hybridization:	undefined \vee
	Valent state:	v4 ~
	Isotope:	0
F	Implicit hydrogens:	3
Р	Atom number:	6
	Aromatic:	False
1. Select the Drawing tool;	Parity:	None
2. Draw carbon chain with five carbon atoms;	Radical:	undefined
3. Click on the oxygen symbol (i.e. O);		Undefined 5
4. Click over the last carbon atom to change it to oxygen;		
5. Confirm with OK .		OK Cancel

Constituent 2

Drawing Constituent 2 of the target mixture

_									
Composition edit				D Editor	3			- 1	n x
	Identity —	2		_ES/InchI ~ 0					X
	CAS:	Multiconstituent							<u> </u>
	Type:	Multiconstituent		🥒 🥕 📖 🗲 🎻 🔍					
	Name: IUPAC:			Rectangle ~					
	Synonyms:								
	SMILES:								
Constituents (3) In	purities (0) Addit	ives (0)			💽 Clea	ar All	×		
	11.05	^							
	CAS:			OH2					
OH ₂		Nonoconstituent v				Want to clear everything?			
	Type: N Name:	ionoconstituent *	N						
	IUPAC:		0	1					
	Synonyms:	Edit	S			Yes No			
	SMILES: 0								
2	Concentration -	1	F		4				
_			Р						
	Typical conce		Cl						
	~	Family: Mass fraction VInit: V	Br						
	Concentratio]				ОК	Cancel
									Calicei
	~	Family: Mass fraction Unit:							
		4	/						
		ОК		Cancel					

Now we move down to the second constituent and repeat the same steps:

- 1. Click Edit on the SMILES row to define the structure of the second constituent;
- 2. The 2D editor appears;
- 3. Click the **Clean button** to clean everything.
- 4. Confirm with **Yes**.

Constituent 2

Drawing Constituent 2 of the target mixture

2D Editor	– 🗆 X
\odot	
Smiles V C1=CC(=C(C(=C1C(C)=O)CI)CI)CI	X
R 2a Make first C 1a 1 1 1 3a 0 HSC 0	Select the <i>Benzene scaffold</i> (1a) and paste it into the drawing pane (1b). Select the <i>Drawing tool</i> (2a) and draw the connections to the benzene (2b). Second click over a bonds converts it to double bond. Click on the oxygen symbol (i.e. O) (3a) and click over the carbon atom connected with double bond (3b). Click on the chlorine symbol (i.e. Cl) (4a) and click over the carbon atoms that should be changed (3b). Confirm with OK (5).
S B B B B B B B B B B B B B B B B B B B	Isotope: 0 Implicit hydrogens: 3
	Atom number: 6
4a a	Aromatic: False
Br	Parity: None
	Radical: undefi 5
	OK Cancel

QSAR TOOLEOX

Chemical input Drawing Constituent 3 of the target mixture

Constituent 3

Composition editor Compos						\bigcirc			
Identity 2 CAS: Type: Name: UNAC: SMLES: Constituents (?) Impunities (?) Additives (?) Constituents (?) Impunities (?) Impunities (?) Additives (?) Constituents (?) Name: Impunities (?) Name: Impunities (?) Multiconstituent Name: Impunities (?) Mante: Impunities (?) Name: Impunities (?) Name: Impunities (?) Impunities (?) Additives (?) Impunities (Composition editor					3		-	o x
Type: Name: UPAC: Solutions Constituent OH2 Identity CAS: Type: Manne: UPAC: Synonyme: Synonyme: </td <td></td> <td>Identity</td> <td>2</td> <td>\sim</td> <td></td> <td>\sum</td> <td></td> <td></td> <td>X</td>		Identity	2	\sim		\sum			X
Name: UPAC: Synonyms: SMILES: Constituents (3) Impurities (0) Additives (0) Impute:		CAS:				ÍDE			
UPAC: Synonyms: SMILES: Constituents (3) Impurities (0) Additives (0) Constituents (3) Impurities (0) Additives (0) Cds: OH2 OH2 OH2 OH2 Cds: Synonyms: Synonyms: Synonyms		Type:	Multiconstituent			1 Ge			
Synoryms SMLES: Constituents (3) Impurities (0) Additives (0) OH2 OH2 OH2 Name: IUPAC: Synoryms: Synoryms: Synoryms: Concentration Typical concentration Typical concentration Family: Mass fraction v Unit v v v v v v v v v v v v v v v v v v v		Name:		Rectangle	<u>~</u>				
SMILES: Constituents (3) Impurities (0) Additives (0) OH2 (As: Type: Mane: Uppe: Name: SMILES: O SMILES: O Concentration Typical concentration Typical concentration Typical concentration Unit Concentration OK Concentration OK		IUPAC:							
Constituents (3) Impunities (0) Additives (0) Constituents (3) Impunities (0) Additives (0) Ch2		Synonyms:							
Constituents (3) Impurities (0) Additives (0) OH2 OH2 OH2 CAS: Type: Monoconstituent UIPAC: Synonyms: SMILES: Concentration Typical concentration Typical concentration Typical concentration Typical concentration Typical concentration Concentration Typical concentration Concentratio		SMILES:						_	
OH2 dentity CAS: Type: Monoconstituent Name: IUPAC: Synonyms: SMILES: 0 3 Concentration Typical concentration Conc	Constituents (3) Impur	tion (0) Additio	(D)			🦲 Clear A	an X		
OH2 <pre> dentity CAS: Type: Monoconstituent Name: UDAC: Synonyms: Solution Concentration Typical concentration Typical concentration Typical concentration Concentration range</pre>	Constituents (5) Impur	ties (0) Additiv	res (0)						
OH2 CAS: Type: Monoconstituent Name: UPAC: Synonyms: SMIES: 0 Concentration Typical concentration Typical concentration Concentration Typical concentration	clo	lentity			OH2				
OH2 Type: Monoconstituent Name: IUPAC: UUPAC: Synonyms: Synonyms: Edit SMILES: O O Edit F P Concentration I Typical concentration I Image: Image: Concentration Image: Concentration Image: Image: Image: OK Cancel		AS:					Want to clear everything?		
3 Concentration Typical concentration Typical concentration Concentration range O Concentration range OK Cancel	OH ₂		onoconstituent	Ν	_	_ /			
3 IUPAC: Synonyms: S Synonyms: S S F P C Br C Concentration Concentration range Concentration				0		• Y_			
3 Concentration Typical concentration Family: Mass fraction Unit: Concentration range Concentration range CK Cancel				S	4	4 [🗌	Yes No		
3 Concentration Typical concentration Family: Mass fraction v Unit: Concentration range Concentration range Concentration range CK Cancel	9	ynonyms:	Edit					-	
3 Concentration			Edit	F					
Typical concentration	3		1	Р					
Concentration range				CI					
Concentration range		- lypical concer							
Concentration range		~	Family: Mass fraction VInit: View	Br					
		Concentration						ОК	Cancel
V Family: Mass fraction V Unit: V									
		~	Family: Mass fraction Unit:						
v				\vee					
OK Cancel			OK	Cancel					

Now we move down to the last (third) constituent and repeat the same steps:

- 1. Click Edit on the SMILES row to define the structure of the second constituent;
- 2. The 2D editor appears;
- 3. Click the **Clean button** to clean everything.
- 4. Confirm with **Yes**.

Drawing Constituent 3 of the target mixture

Constituent 3

Chemical input Target substance identity

Chemical input Mixture decomposition

- In the current example we will predict the skin sensitization of a mixture based on its constituents.
- A specific option "Decomposition" allows all constituents of a mixture as well as available additives/impurities to be shown in the data matrix.
- Once the constituents are on the data matrix, the user can handle them as individual substances and further, to use them for predicting the whole mixture.

QSAR TOOLEOX

Chemical input Input mixture

Chemical Input Target chemical identity

- The already drawn target structures automatically appear on the data matrix.
- Note that no CAS number or name is associated with this chemical.
- This means the target chemical is not listed in the chemical inventories/databases available in Toolbox (see next slide).

Chemical Input Target chemical identity

- Background
- Keywords
- Objectives
- The exercise
- Workflow
 - Input
 - Profiling

Profiling Overview

- "Profiling" refers to the electronic process of retrieving relevant information on the target compound, other than environmental fate, ecotoxicity and toxicity data, which are stored in the Toolbox database.
- Available information includes likely mechanism(s) of action, as well as observed or simulated metabolites.
- For most of the profilers, background information can be retrieved by highlighting one of the profilers (for example, Protein binding alerts for SS by OASIS and clicking on "About" or "View" (see next screen shots).

Profiling Side-Bar to Profiling

The **View** button provides OSAR TOOLBOX more details on the coded 2 knowledge in the profiler. \odot Documents Protein binding alerts for skin sensitization by OASIS (Endpoint Specific) - Profiling Scheme Browser _ \times Profiling methods ~ 8 Selected Optic Save Scheme Export Scheme Save Tests View Tests Run All Tests Select All Unselect All Invert About Opt Definition Properties Training Set Literature MetaInfo Table Scheme Ionization at pH = 1 Ionization at pH = 4 Filter Category tree Ionization at pH = 7.4 [106] Amides Ionization at pH = 9 Protein binding alerts for skin sensitization by Acvlation (Thio)carbamoylation of protein nucleo Isocyanates, Isothiocyanates Acyl transfer via nucleophilic addition Query details Carbodiimides Toxic hazard classification by Crame [0] Structure Query Metabolism Direct acylation involving a leaving gro Toxic hazard classification by Cramer (extended) (Thio)Acetates Ultimate biodeo SMARTS Contents (Thio)Acyl and (thio)carbamoyl halic Uncouplers (MITOTOX) Oueries
 Oueries
 c[#7h][#6](=[#8])c Anhydrides (sulphur analogues of a Edit Endpoint Specific Search 1: SMARTS Acute aquatic toxicity classification by Verhaar (Modified) Azlactones and unsaturated lactone Masks Acute aquatic toxicity MOA by OASIS Carbamates Navigation mode: Cascade Facade Search 1: SMARTS Acute Oral Toxicit Diacyl peroxides, anhydrides (sulph Search 2: SMARTS N-Acylloxysuccinimides nulation - metabolism ale N-Carbonyl heteroaryl amines Bioaccumulation - metabolism half-lives N-Carb Biodegradation fragments (BioWIN MITI) N-Halo 3 Carcinogenicity (genotox and nongenotox) alerts by ISS Phosph anides DART scheme Add Query Sulpho DNA alerts for AMES, CA and MNT by OASIS Remove Thiosul Eye irritation/corrosion Exclusion rules by BfR Add Mask Thiosu Eve irritation/corrosion Inclusion rules by BfR Ester amin Complex search options in vitro mutagenicity (Ames test) alerts by ISS in vivo mutagenicity (Micronucleus) alerts by ISS Exact connectivity Dithiocarbamate salts Dithiocarbamates cologic Primary Classification Ignore stereo information Dithioesters otein binding alerts for Chromo Exact match Ester aminolysis or thiolysis Protein binding alerts for skin sensitization by OASIS Activated (di)aryl esters Queries execution mode All Activated (thio)esters Activated alkyl diesters Mapping Retinoic Acid Receptor Binding Benzyl or phenethyl salicylates Unique mappings rtER Expert System - USEPA Phenyl carbonates Skin irritation/corrosion Exclusion rules by BfR Max maps 1000 Substituted benzyl benzoates Skin irritation/corrosion Inclusion rules by BfR Isocyanates and related chemicals Empiric Toxicological

- 1. Selected profiler related to the investigated endpoint: Protein binding alerts for SS by OASIS;
- 2. Click on the "View" button;
- 3. Click for example on category **Amides** to see the structural boundaries used to code the knowledge.

Profiling Side-Bar to Profiling

Q: 3 TDOLEOX Input Imply Imply View Imply New Delete	► Profiling ► Data ► Category de	efinition > Data Gap Fillin	ig ▶ Repo	rt		
⊘ Documents	Filter endpoint tree 🍸	Parent chemical [target]	Constituent #1	Constituent #2	Constituent #3	
Profiling methods Options Profiling methods Options 22 Selected f Select All Unselect All Unselect All Acute organic concists money on a concists Acute organic concists	Structure	۰۰۰۰ ۲ <u>۶</u> ۲	н ₃ сОн		ÔŢÔ	
Aquatic toxicity classification by ECOSAR	+ Environmental Fate and Transport					
Bioaccumulation - metabolism alerts Bioaccumulation - metabolism half-lives	Ecotoxicological Information					
Biodegradation fragments (BioWIN MITI)	Human Health Hazards	•				
Carcinogenicity (genotox and nongenotox) alerts by DART scheme	Acute Toxicity	•				
DNA alerts for AMES, CA and MNT by OASIS	Bioaccumulation	•				
Eye irritation/corrosion Exclusion rules by BfR	Carcinogenicity	-				
Eye irritation/corrosion Inclusion rules by BfR in vitro mutagenicity (Ames test) alerts by ISS	Developmental Toxicity / Teratogenicity	-				
in vivo macagenicity (Micronalcieus) alarts by ISS	Genetic Toxicity					
Keratinocyte gene expression	Immunotoxicity		<u> </u>			
Cocologis Drimony Glassification Protein binding alerts for chromosomal adertation by	Irritation / Corrosion					
Protein binding alerts for skin sensitization according	Neurotoxicity					
Protein binding alerts for skin sensitization by OASIS	Photoinduced toxicity					
✓ Protein Binding Potency h-CLAT	- Reported Doso-Taxiaity					
Retinoic Acid Receptor Binding	Sensitisation AW SW AOP					
rtER Expert System - USEPA	ToxCast			*****	******	
Skin irritation/corrosion Exclusion rules by BfR	Toxicity to Reproduction					
Skin irritation/corrosion Inclusion rules by BfR /	Toxicokinetics, Metabolism and Distributi					
Chemical elements						
✓ Groups of elements						
✓ Lipinski Rule Oasis	1 Desitions the s				L // .	
✓ Organic functional groups	1. Position the cursor	on the leve	el of "Se	ensitiza	τιοη΄΄;	
 Organic functional groups (nested) Organic functional groups (US EPA) 	2. Select the most pla	ausible prof	ilers rela	ated to	the targe	t endpo
Organic functional groups, Norbert Haider (checkmol/		•			the targe	e enapo
Sudculie Simbrie	our case the orange h	nighlighted)	;			
Tautomers unstable	3. Click Apply .					
▲ Toxicological						

Profiling Profiling the target substance

- The actual profiling will take several seconds depending on the number and type of selected profilers.
- The results of profiling automatically appear as a dropdown box under the target substance.
- In this example the target mixture and its constituents are profiled by all profilers defined as plausible (highlighted in orange) for skin sensitization (only endpoint-specific are listed here):
 - Aquatic toxicity classification by ECOSAR;
 - Keratinocyte gene expression;
 - Protein binding alerts for skin sensitization according to GHS
 - Protein binding alerts for skin sensitization by OASIS
 - Protein binding potency h-CLAT
 - Respiratory sensitization

Profiling Profiling the target substance

SAR TOOLBOX	► Profiling ► Data ► Category de	finition	► Report		
rofiling Custom profile					
v View New Delete					
Documents	Filter endpoint tree	Parent chemical [target]	Constituent #1	Constituent #2	Constituent #3
Documents					
Profiling methods				<u>A</u>	
ons 22 Selected 22 Selected	- Structure	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	H ₃ C OH		0,0
Select All Unselect All Invert About Option	5			oris 6	•
Acute Oral Toxicity			L		
Bioaccumulation - metal	Fnvironmental Fate and Transport		· · · · ·		
Bioaccumulation - metal Visualizatio	on the profiling result	s for the ta	raet miv	ture and i	its individual
biodegradation nagmen	on the proning result		i yet mix		
Carcinogenicity (genotox and nongenotox) alerts by	- Pome				
DART scheme DNA alerts for AMES, CA and MNT by OASIS	- Predefined				
Eye irritation/corrosion Exclusion rules by BfR	OECD HPV Chemical Categories	Not categorized	Not categorized	Not categorized	Not categorized
Eye irritation/corrosion Inclusion rules by BfR	Substance type	Mixture	Discrete chemical	Discrete chemical	Discrete chemical
in vitro mutagenicity (Ames test) alerts by ISS	US-EPA New Chemical Categories	Neutral Organics	Neutral Organics	Neutral Organics	Neutral Organics
	General Mechanistic				
in vivo mutagenicity (Micronucleus) alerts by ISS		N	C		
✓ Keratinocyte gene expression	Protein binding by OASIS	Schiff base formation	No alert found	Schiff base formation	No alert found
 Keratinocyte gene expression Oncologic Primary Classification 	Protein binding by OASIS	Schiff base formation No alert found	•	Schiff base formation No alert found	
Keratinocyte gene expression	Protein binding by OASIS		No alert found	No alert found	No alert found
 Keratinocyte gene expression Oncologic Primary Classification Protein binding alerts for Chromosomal aberration by Protein binding alerts for skin sensitization according Protein binding alerts for skin sensitization by OASIS 	Protein binding by OASIS Protein binding by OECD	No alert found	No alert found DPRA less than 9% (D	No alert found Out of mechanistic do	No alert found DPRA less than 9% (DP
Keratinocyte gene expression Oncologic Primary Classification Protein binding alerts for Chromosomal aberration by Protein binding alerts for skin sensitization according Protein binding alerts for skin sensitization by OASIS Protein Binding Potency h-CLAT	Protein binding by OASIS Protein binding by OECD Protein binding potency Cys (DPRA 13 Protein binding potency GSH	No alert found DPRA less than 9% (DPRA	No alert found DPRA less than 9% (D., Not possible to classif	No alert found Out of mechanistic do Not possible to classify	No alert found DPRA less than 9% (DP Not possible to classify
Keratinocyte gene expression Oncologic Primary Classification Protein binding alerts for Chromosomal aberration by Protein binding alerts for skin sensitization according Protein binding alerts for skin sensitization by OASIS Protein Binding Potency h-CLAT Respiratory sensitisation	Protein binding by OASIS Protein binding by OECD Protein binding potency Cys (DPRA 13 Protein binding potency GSH Protein binding potency Lys (DPRA 13%)	No alert found DPRA less than 9% (DPRA Not possible to classify acc	No alert found DPRA less than 9% (D., Not possible to classif	No alert found Out of mechanistic do Not possible to classify	No alert found DPRA less than 9% (DP Not possible to classify
Keratinocyte gene expression Oncologic Primary Classification Protein binding alerts for Chromosomal aberration by Y Protein binding alerts for skin sensitization according Protein binding alerts for skin sensitization by OASIS Protein Binding Potency h-CLAT Respiratory sensitisation Retinoic Acid Receptor Binding	Protein binding by OASIS Protein binding by OECD Protein binding potency Cys (DPRA 13 Protein binding potency GSH Protein binding potency Lys (DPRA 13%) Endpoint Specific	No alert found DPRA less than 9% (DPRA Not possible to classify acc	No alert found DPRA less than 9% (D., Not possible to classif	No alert found Out of mechanistic do Not possible to classify	No alert found DPRA less than 9% (DP Not possible to classify
Keratinocyte gene expression Oncologic Primary Classification Protein binding alerts for Chromosomal aberration by Protein binding alerts for skin sensitization according Protein binding alerts for skin sensitization by OASIS Protein Binding Potency h-CLAT Respiratory sensitisation	Protein binding by OASIS Protein binding by OECD Protein binding potency Cys (DPRA 13 Protein binding potency GSH Protein binding potency Lys (DPRA 13%) Endpoint Specific Aquatic toxicity classification by ECOS	No alert found DPRA less than 9% (DPRA Not possible to classify acc DPRA less than 9% (DPRA Neutral Organics	No alert found DPRA less than 9% (D., Not possible to classif. DPRA less than 9% (D., Neutral Organics	No alert found Out of mechanistic do Not possible to classify DPRA less than 9% (DP Neutral Organics	No alert found DPRA less than 9% (DP., Not possible to classify DPRA less than 9% (DP., Neutral Organics
 ✓ Keratinocyte gene expression Oncologic Primary Classification Protein binding alerts for Chromosomal aberration by ✓ Protein binding alerts for skin sensitization according ✓ Protein Binding alerts for skin sensitization by OASIS ✓ Protein Binding Potency h-CLAT ✓ Respiratory sensitization Retinoic Acid Receptor Binding TER Expert System - USEPA Skin irritation/corrosion Exclusion rules by BfR Skin irritation/corrosion Inclusion rules by BfR 	Protein binding by OASIS Protein binding by OECD Protein binding potency Cys (DPRA 13 Protein binding potency GSH Protein binding potency Lys (DPRA 13%) Endpoint Specific Aquatic toxicity classification by ECOS Keratinocyte gene expression	No alert found DPRA less than 9% (DPRA Not possible to classify acc DPRA less than 9% (DPRA Neutral Organics Not possible to classify acc	No alert found DPRA less than 9% (D Not possible to classif DPRA less than 9% (D Neutral Organics Not possible to classif	No alert found Out of mechanistic do Not possible to classify DPRA less than 9% (DP., Neutral Organics Not possible to classify	No alert found DPRA less than 9% (DP., Not possible to classify DPRA less than 9% (DP., Neutral Organics Not possible to classify
Keratinocyte gene expression Oncologic Primary Classification Protein binding alerts for Chromosomal aberration by Protein binding alerts for skin sensitization according. Protein Binding Potency h-CLAT Respiratory sensitisation Retinoic Acid Receptor Binding rtER Expert System - USEPA Skin irritation/corrosion Exclusion rules by BfR Skin irritation/corrosion Inclusion rules by BfR Empiric	Protein binding by OASIS Protein binding by OECD Protein binding potency Cys (DPRA 13 Protein binding potency CSH Protein binding potency Lys (DPRA 13%) Endpoint Specific Aquatic toxicity classification by ECOS Keratinocyte gene expression Protein binding alerts for skip sensitiz	No alert found DPRA less than 9% (DPRA Not possible to classify acc DPRA less than 9% (DPRA Neutral Organics Not possible to classify acc No alert found	No alert found DPRA less than 9% (D.,, Not possible to classif., DPRA less than 9% (D., Neutral Organics Not possible to classif., No alert found	No alert found Out of mechanistic do Not possible to classify DPRA less than 9% (DP., Neutral Organics Not possible to classify No alert found	No alert found DPRA less than 9% (DP., Not possible to classify DPRA less than 9% (DP., Neutral Organics Not possible to classify No alert found
Keratinocyte gene expression Oncologic Primary Classification Protein binding alerts for chromosomal aberration by Protein binding alerts for skin sensitization according Protein binding alerts for skin sensitization by OASIS Protein Binding Potency In-CLAT Respiratory sensitisation Retinoic Acid Receptor Binding rtER Expert System - USEPA Skin irritation/corrosion Exclusion rules by BfR Skin irritation/corrosion Inclusion rules by BfR Empiric Commical elements	Protein binding by OASIS Protein binding by OECD Protein binding potency Cys (DPRA 13 Protein binding potency GSH Protein binding potency Lys (DPRA 13%) Endpoint Specific Aquatic toxicity classification by ECOS Keratinocyte gene expression Protein binding alerts for skin sensitiz	No alert found DPRA less than 9% (DPRA Not possible to classify acc DPRA less than 9% (DPRA Neutral Organics Not possible to classify acc No alert found Schiff base formation	No alert found DPRA less than 9% (D., Not possible to classif. DPRA less than 9% (D., Neutral Organics Not possible to classif. No alert found No alert found	No alert found Out of mechanistic do Not possible to classify DPRA less than 9% (DP., Neutral Organics Not possible to classify No alert found Schiff base formation	No alert found DPRA less than 9% (DP., Not possible to classify DPRA less than 9% (DP., Neutral Organics Not possible to classify No alert found No alert found
V Keratinocyte gene expression Oncologic Primary Classification Protein binding alerts for Chromosomal aberration by V Protein binding alerts for skin sensitization according V Protein Binding alerts for skin sensitization by OASIS V Protein Binding Potency h-CLAT Retinoic Acid Receptor Binding rtER Expert System - USEPA Skin irritation/corrosion Exclusion rules by BfR Kin irritation/corrosion Inclusion rules by BfR Kin price V Groups of elements	Protein binding by OASIS Protein binding by OECD Protein binding potency Cys (DPRA 13 Protein binding potency GSH Protein binding potency Lys (DPRA 13%) Endpoint Specific Aquatic toxicity classification by ECOS Keratinocyte gene expression Protein binding alerts for skin sensitiz Protein binding alerts for skin sensitiz	No alert found DPRA less than 9% (DPRA Not possible to classify acc DPRA less than 9% (DPRA Neutral Organics Not possible to classify acc No alert found Schiff base formation No alert found	No alert found DPRA less than 9% (D.,, Not possible to classif., DPRA less than 9% (D.,, Neutral Organics Not possible to classif., No alert found No alert found No alert found	No alert found Out of mechanistic do Not possible to classify DPRA less than 9% (DP Neutral Organics Not possible to classify No alert found Schiff base formation No alert found	No alert found DPRA less than 9% (DP., Not possible to classify DPRA less than 9% (DP., Neutral Organics Not possible to classify No alert found No alert found No alert found
Kerathocyte gene expression Oncologic Primary Classification Protein binding alerts for Chromosomal aberration by Protein binding alerts for Skin sensitization according Protein Binding alerts for skin sensitization by OASIS Vroten Binding alerts for skin sensitization Protein Binding alerts for skin sensitization Respiratory sensitisation Retinoic Acid Receptor Binding ritER Expert System - USEPA Skin irritation/corrosion Exclusion rules by BfR Skin irritation/corrosion Inclusion rules by BfR Skin irritation/corrosion Inclusion rules by BfR Skin irritation/corrosion Skin rules V chemical elements Groups of elements V Lipnsk Rule Oass	Protein binding by OASIS Protein binding by OECD Protein binding potency Cys (DPRA 13 Protein binding potency GSH Protein binding potency Lys (DPRA 13%) Endpoint Specific Aquatic toxicity classification by ECOS Keratinocyte gene expression Protein binding alerts for skin sensitiz Protein binding Potency n-CLAT Respiratory sensitisation	No alert found DPRA less than 9% (DPRA Not possible to classify acc DPRA less than 9% (DPRA Neutral Organics Not possible to classify acc No alert found Schiff base formation	No alert found DPRA less than 9% (D., Not possible to classif. DPRA less than 9% (D., Neutral Organics Not possible to classif. No alert found No alert found	No alert found Out of mechanistic do Not possible to classify DPRA less than 9% (DP., Neutral Organics Not possible to classify No alert found Schiff base formation	No alert found DPRA less than 9% (DP., Not possible to classify DPRA less than 9% (DP., Neutral Organics Not possible to classify No alert found No alert found
V Keratinocyte gene expression Oncologic Primary Classification Protein binding alerts for Chromosomal aberration by V Protein binding alerts for Skin sensitization according V Protein Binding Plets for Skin sensitization by OASIS V Protein Binding Plets for Skin sensitization Retinoic Acid Receptor Binding rtER Expert System - USEPA Skin irritation/corrosion Exclusion rules by BfR Skin irritation/corrosion Inclusion rules by BfR C mpiric V Groups of elements	Protein binding by OASIS Protein binding by OECD Protein binding potency Cys (DPRA 13 Protein binding potency Cys (DPRA 13%) Endpoint Specific Aquatic toxicity classification by ECOS Keratinocyte gene expression Protein binding alerts for skin sensitiz Protein binding alerts for skin sensitiz Protein Binding Potency n-CDAT Respiratory sensitisation Empiric	No alert found DPRA less than 9% (DPRA Not possible to classify acc DPRA less than 9% (DPRA Neutral Organics Not possible to classify acc No alert found Schiff base formation No alert found No alert found	No alert found DPRA less than 9% (D., Not possible to classif. DPRA less than 9% (D., Neutral Organics Not possible to classif. No alert found No alert found No alert found	No alert found Out of mechanistic do Not possible to classify DPRA less than 9% (DP., Neutral Organics Not possible to classify No alert found Schiff base formation No alert found No alert found	No alert found DPRA less than 9% (DP., Not possible to classify DPRA less than 9% (DP., Neutral Organics Not possible to classify No alert found No alert found No alert found No alert found
Keratinocyte gene expression Oncologic Primary Classification Protein binding alerts for skin sensitization according Protein binding alerts for skin sensitization according Protein Binding alerts for skin sensitization by OASIS Protein Binding alerts for skin sensitization Retinoic Acid Receptor Binding retER Expert System - USEPA Skin irritation/corrosion Exclusion rules by BfR Skin irritation/corrosion Inclusion rules by BfR Chemical elements Groups of elements Upinsk Rule Oasis Organic functional groups Organic functional groups Organic functional groups Organic functional groups	Protein binding by OASIS Protein binding by OECD Protein binding potency Cys (DPRA 13 Protein binding potency Cys (DPRA 13%) Endpoint Specific Aquatic toxicity classification by ECOS Keratinocyte gene expression Protein binding alerts for skin sensitiz Protein binding alerts for skin sensitiz Protein Binding Potency n-CLAT Respiratory sensitisation Empiric Chemical elements	No alert found DPRA less than 9% (DPRA Not possible to classify acc DPRA less than 9% (DPRA Neutral Organics Not possible to classify acc No alert found Schiff base formation No alert found No alert found Group 14 - Carbon C	No alert found DPRA less than 9% (D., Not possible to classif. DPRA less than 9% (D., Neutral Organics Not possible to classif. No alert found No alert found No alert found No alert found Group 14 - Carbon C	No alert found Out of mechanistic do Not possible to classify DPRA less than 9% (DP., Neutral Organics Not possible to classify No alert found Schiff base formation No alert found Group 14 - Carbon C	No alert found DPRA less than 9% (DP., Not possible to classify DPRA less than 9% (DP., Neutral Organics Not possible to classify No alert found No alert found No alert found No alert found No alert found Group 14 - Carbon C
Keratinocyte gene expression Oncologic Primary Classification Protein binding alerts for chromosomal aberration by Protein binding alerts for skin sensitization according Protein binding alerts for skin sensitization by OASJIS Protein Binding Potency h-CLAT Respiratory sensitisation Retinoic Acid Receptor Binding ritER Expect System - USEPA Skin irritation/corrosion Exclusion rules by BfR Skin irritation/corrosion Inclusion rules by BfR Skin irritation/corrosion Inclusion rules by BfR Compus of elements Corpanic functional groups V Organic functional groups (Usepa) V Organic functional groups (USEPA) V Organic functional groups, Norbert Halder (checkmol	Protein binding by OASIS Protein binding by OECD Protein binding potency Cys (DPRA 13 Protein binding potency Cys (DPRA 13%) Endpoint Specific Aquatic toxicity classification by ECOS Keratinocyte gene expression Protein binding alerts for skin sensitiz Protein binding alerts for skin sensitiz Protein Binding Potency n-CDAT Respiratory sensitisation Empiric	No alert found DPRA less than 9% (DPRA Not possible to classify acc DPRA less than 9% (DPRA Neutral Organics Not possible to classify acc No alert found Schiff base formation No alert found No alert found Group 14 - Carbon C Halogens	No alert found DPRA less than 9% (D., Not possible to classif. DPRA less than 9% (D., Neutral Organics Not possible to classif. No alert found No alert found No alert found No alert found Group 14 - Carbon C Non-Metals	No alert found Out of mechanistic do Not possible to classify DPRA less than 9% (DP., Neutral Organics Not possible to classify No alert found Schiff base formation No alert found Group 14 - Carbon C Halogens	No alert found DPRA less than 9% (DP., Not possible to classify DPRA less than 9% (DP., Neutral Organics Not possible to classify No alert found No alert found
Keratinocyte gene expression Oncologic Primary Classification Protein binding alerts for Chromosomal aberration by Protein binding alerts for Skin sensitization according Protein Binding alerts for skin sensitization by OASIS Protein Binding alerts for skin sensitization by OASIS Protein Binding alerts for skin sensitization Retmole Acid Receptor Binding rtER Expert System - USEPA Skin irritation/corrosion Exclusion rules by BfR Skin irritation/corrosion Inclusion rules by BfR Skin irritation/corrosion Inclusion rules by BfR Skin irritation/corrosion Sectusion Corpanic functional groups V Organic functional groups V Organic functional groups V Organic functional groups, Norbert Halder (checkmol V Structure smlarity	Protein binding by OASIS Protein binding by OECD Protein binding potency Cys (DPRA 13 Protein binding potency Cys (DPRA 13%) Endpoint Specific Aquatic toxicity classification by ECOS Keratinocyte gene expression Protein binding alerts for skin sensitiz Protein binding alerts for skin sensitiz Protein Binding Potency n-CLAT Respiratory sensitisation Empiric Chemical elements	No alert found DPRA less than 9% (DPRA Not possible to classify acc DPRA less than 9% (DPRA Neutral Organics Not possible to classify acc No alert found Schiff base formation No alert found No alert found Group 14 - Carbon C	No alert found DPRA less than 9% (D., Not possible to classif. DPRA less than 9% (D., Neutral Organics Not possible to classif. No alert found No alert found No alert found No alert found Group 14 - Carbon C	No alert found Out of mechanistic do Not possible to classify DPRA less than 9% (DP., Neutral Organics Not possible to classify No alert found Schiff base formation No alert found Group 14 - Carbon C	No alert found DPRA less than 9% (DP., Not possible to classify DPRA less than 9% (DP., Neutral Organics Not possible to classify No alert found No alert found No alert found No alert found So alert found
Keratinocyte gene expression Oncologic Primary Classification Protein binding alerts for Chromosomal aberration by Protein binding alerts for skin sensitization according. Protein binding alerts for skin sensitization by OASIS Protein Binding Potency h-CLAT Respiratory sensitisation Retinoic Acid Receptor Binding tERE Expert System Skin irritation/corrosion Exclusion rules by BfR Skin irritation/corrosion Inclusion rules by BfR Skin irritation/corrosion Inclusion rules by BfR Skin irritation/corrosion Inclusion rules by BfR Chemical elements Groups of elements Upinski Rule Oasis Organic functional groups Organic functional groups (nested) Organic functional groups (Notert Haider (checkmol	Protein binding by OASIS Protein binding by OECD Protein binding potency Cys (DPRA 13 Protein binding potency CSH Protein binding potency Lys (DPRA 13%) Endpoint Specific Aquatic toxicity classification by ECOS Keratinocyte gene expression Protein binding alerts for skin sensitiz Protein binding alerts for skin sensitiz Protein Binding Potency n-CLAT Respiratory sensitisation Empiric Chemical elements Groups of elements	No alert found DPRA less than 9% (DPRA Not possible to classify acc DPRA less than 9% (DPRA Neutral Organics Not possible to classify acc No alert found Schiff base formation No alert found No alert found Group 14 - Carbon C Halogens	No alert found DPRA less than 9% (D., Not possible to classif. DPRA less than 9% (D., Neutral Organics Not possible to classif. No alert found No alert found No alert found No alert found Group 14 - Carbon C Non-Metals	No alert found Out of mechanistic do Not possible to classify. DPRA less than 9% (DP., Neutral Organics Not possible to classify No alert found Schiff base formation No alert found Group 14 - Carbon C Halogens Bioavailable	No alert found DPRA less than 9% (DP., Not possible to classify DPRA less than 9% (DP., Neutral Organics Not possible to classify No alert found No alert found

The profiling results for all the constituents are consistent with one exception (Constituent #2). The constituent #2 reacts with proteins via Schiff-base formation according to general and endpoint-specific Protein binding alerts for SS profiler.

- Background
- Keywords
- Objectives
- The exercise
- Workflow
 - Input
 - Profiling
 - Data

Data

- "Data" refers to the electronic process of retrieving the environmental fate, eco-toxicity and toxicity data that are residing in the Toolbox.
- Data gathering can be executed in a global fashion (i.e. collecting all data of all endpoints) or on a more narrowly defined basis (e.g. collecting data for a single or limited number of endpoints).
- In this example, we limit our data gathering to the common Skin endpoints from databases associated with Skin Sensitization endpoint. The relevant databases are become highlighted in green based on the selected target endpoint
Data

Data Process of collecting data

for Grouping Chemicals	QSAR TOOLBOX		t 1100 1100 Ny definition ► Data Gap Filling ► Report			X 💩 S 🖉 🕄
Decomposition Decompos	🛫 😑 💽 😒 🖨 🖨					
Sector Sector Sector Sector Construction Assay SSC1A Under Operation Assay SSC1A Sector Operation Assay SSC1A Physical Chemical Properties Operation Assay SSC1A Phys	· · · · · · · · · · · · · · · · · · ·	Filter endpoint tree		– 🗆 X	Constituent #3	Developed by LMC, Bulgaria
Skin sensitization ECETOC CT is Non NC: >15 x 02 x 0 Image: Skin sensitization ECETOC Image: Skin sensitization ECETOC Image: Skin sensitization ECETOC Image: Skin sensitization ECETOC Image: Skin sensitization ECETOC Image: Skin sensitization ECETOC Image: Skin sensitization ECETOC Image: Skin sensitization ECETOC Image: Skin sensitization ECETOC Image: Skin sensitization ECETOC Image: Skin sensitization ECETOC Image: Skin sensitization ECETOC Image: Skin sensitization ECETOC Image: Skin sensitization ECETOC Image: Skin sensitization ECETOC Image: Skin sensitization ECETOC Image: Skin sensitization ECETOC Image: Skin sensitization ECETOC Image: Skin sensitization ECETOC Image: Skin sensitization ECETOC Image: Skin sensitization ECETOC Image: Skin sensitization ECETOC Image: Skin sensitization ECETOC Image: Skin sensitization ECETOC Image: Skin sensitization ECETOC Image: Skin sensitization ECETOC Image: Skin sensitization ECETOC Image: Skin sensitization ECETOC Image: Skin sensitization ECETOC Image: Skin sensitization ECETOC Image: Skin sensitization ECETOC Image: Skin sensitization ECETOC Image: Skin sensitization ECETOC Image: Skin sensitization ECETOC Image: Skin sensitization ECETOC Image: Skin sensitization ECETOC	Select All Unselect All Invert Cell Transformation Assay ISSCTA Invert Invert Cell Transformation Assay ISSCTA Developmental & Reproductive Toxicity (DART) Developmental & Reproductive Toxicity (DART) Developmental & Reproductive Toxicity (DART) Developmental toxicity database (CAESAR) Developmental Reproductive Toxicity (DART) Developmental toxicity database (CAESAR) Developmental toxicity (DART) Developmental toxicity (DART) Genotoxicity & Caronogenicity ECVAM Genotoxicity & Caronogenicity ECVAM Genotoxicity esticides EFSA Human Half-life V Kerstnocyte gene expression GNaudan V Kerstnocyte gene expression GNaudan V Kerstnocyte gene expression GNaudan V Kerstnocyte gene expression GNaudan V Rechord gene expression GNaudan V Rechord Does Tox Fraunhofer TEBM Repeated Does Tox Kraunhofer TEBM Repoted Does Tox Kraunhofer JESS Rodent Inhabtion Toxicity Database Skn Irration Skn Irration	Structure Structure info Structure info Structure info Parameters Environmental Fate and Transpor Ecotoxicological Information Human Health Hazards Acute Toxicity Output Developmental Toxicity / Teratogenicity Developmental Toxicity / Teratogenicity Developmental Toxicity / Teratogenicity Developmental Toxicity Inmunotoxicity Inmunotoxicity Inmunotoxicity Photoinduced toxicity Repeated Dose Toxicity Repeated Dose Toxicity Structure Statistion AW SW	y	s 2 chemicals.	two of	the three mixture
Miscellaneous 1/1 MS: Category C		in Vivo	1/17		-	
ToxCast		Miscellaneous Undefined Type of Method ToxCast Toxicity to Reproduction	1/1 1/1	MS: GHS criteria not met		

Recap

- We have entered the mixture with defined components.
- The profiling results showed no protein binding alerts for two of the mixture constituents (constituents # 1 and #3). The third constituent (constituent #2) has positive protein binding alerts and could elicit skin sensitization effect.
- Negative experimental data has been found for two of the mixture constituents (constituents # 2 and #3). No experimental data has been found for the third constituent (constituent #1).
- The constituent without experimental data and positive protein binding alert (constituent #1) will be used for further read across analysis. Then, all of the available data – experimental and predicted will be used for skin sensitization prediction of the mixture.

Outlook

- Background
- Keywords
- Objectives
- The exercise
- Workflow
 - Input
 - Profiling
 - Data

• Read across prediction of constituent without data

• Focus constituent without experimental data

Read across prediction of constituent without data Focus constituent

Read across prediction of constituent without data Focus constituent

		× • • × •
> Input > Profiling > Data > Data Import Export Delete III	Category definition Data Gap Filling Report	The OECD QSAR Toolb for Grouping Chemical into Categories
ather Import IUCLID6 IUCLID6 Database Inventory		Developed by LMC, Bu
Documents The endpoint tree Document 1 Image: Carl Md: 02-01 Composition list Structure Image: Carl Md: 02-01 Composition list Structure Structure Image: Carl Md: 02-01 Constituent #2 Structure Structure Image: Carl Md: 02-01 Constituent #2 Structure info Parameters Image: Carl Md: 02-01 Constituent #2 Structure info Structure info Databases Stelected Structure info Select All Unselect All Invect Human Health Hazards Cell Tankformston Assay ISSCTA Acute Toxicity Acute Toxicity Developmental Keproductive Toxicity (DART) Developmental toxicity ILSI Acute Toxicity Developmental toxicity ILSI Carcinogenicity Carling Developmental toxicity ILSI Carl Tankford gene expression Givaudan Keratinocyte gene expression Givaudan Initiation Corrosion Genotoxicity e Genetoxicity Gene expression Givaudan Feb Distribution database (normalised) Receptor Mediated Effects Micronucleus ISSNIC Micronucleus OASIS Toxicokinetics, Metabolism and V RACH Shalaton Toxicity Database Skin Irritation Toxicokinetics, Metabolism and V RACH Shalaton Toxicity Database Ski	AW SW AOP	
✓ Skin senstization ECETOC ■ TwyCsetnia	This focused component appeared in	
۲	separate data matrix	
	cused constituent #1 is automatically selected. The workflor alogues of the focused constituent #1.	ow could

Outlook

- Background
- Keywords
- Objectives
- The exercise
- Workflow
 - Input
 - Profiling
 - Data

• Read across prediction of constituent without data

- Focus constituent without experimental data
- Define category

Category Definition Overview

- This module provides the user with several means of grouping chemicals into a toxicologically meaningful category that includes the target molecule.
- This is the critical step in the workflow.
- Several options are available in the Toolbox to assist the user in refining the category definition.
- The different grouping methods allow the user to group chemicals into chemical categories according to different measures of "similarity".

Basic guidance for category formation and assessment

Suitable categorization phases:

- 1. Structure-related profilers.
- 2. Endpoint specific profilers (for sub-cat).
- 3. Additional structure-related profilers, if needed to eliminate dissimilar chemicals (to increase the consistency of category) (e.g. chemical elements).

Performing categorization:

- 1. The categorization phases should be applied successively
- 2. The application order of the phases depend on the specificity of the data gap filling
- 3. More categories of same Phase could be used in forming categories
- 4. Some of the phases could be skipped if consistency of category members is reached

Graphical illustration of suitable categorization phases is shown on next slide

Suitable Categorization/Assessment Phases Phase I. Structure based **US EPA Categorization OECD** Categorization Organic functional group Structural similarity ECOSAR **Repeating Phase I due to Multifunctionality of chemicals** Phase II. Mechanism based DNA binding mechanism Protein binding mechanism ٠ Genotoxicity/carcinogenicity Cramer rules Verhaar rule Skin/eye irritation corrosion rules Metabolism accounted for Phase III. Eliminating dissimilar chemicals **Apply Phase I – for structural dissimilarity** Filter by test conditions – for Biological dissimilarity

Broad grouping Endpoint Non-specific

Subcategorization Endpoint Specific

Subcategorization Endpoint Specific

Read across prediction of constituent without data Forming category for studied endpoint

Phase I categorization in Toolbox

*Neutral organic category include chemicals having different functionalities as alcohols, ketones, ethers etc. In this respect the basic principle that structurally similar chemicals may elicit similar effects would not be preserved, because Neutral organic mixed many different functionalities

Read across prediction of constituent without data Forming category for studied endpoint

- Based on the above recommendations the OFG is used as initial categorization group
- Refinement of the initial group is based on endpoint-specific protein binding profiler:
 - Protein binding alerts for skin sensitization.

Category definition is a tool for grouping chemicals, which allows to group chemicals based on different measures of "similarity". For more details see tutorials posted on QSAR Toolbox website:

https://qsartoolbox.org/support/

See next slides

The OECD (Q)SAR Toolbox for Grouping Chemicals into Categories

Read across prediction of constituent without data Define category by OFG

- 1. Go to *Category definition* module;
- 2. Select "Sensitization" level of endpoint tree;
- 3. Select Organic functional groups (OFG) and click on Define;

4. Combination of three organic functional groups has been identified in the target chemical (in our case constituent #2), which will be used for searching analogues, click **OK**;

5. a list of 97 chemicals has been found having all the three categories identified in the target chemical; gather data for the analogues (see next slide)

Read across prediction of constituent without data Gather data for analogues chemicals

Outlook

- Background
- Keywords
- Objectives
- The exercise

Workflow

- Input
- Profiling
- Data

Read across prediction of constituent without data

- Focus constituent without experimental data
- Define category
- Apply read across

Read across prediction of constituent without data Apply read across

QSAR TOOLEOX	► Profiling ► Data ► Category		6 Filling	1		Possible data inconsistency Action Metadata Assay JBuehler Test (14 chemicals; 21 data) Øreund's Complete Adjuvant Test (2 chemicals; 2 data)	The OECD QSAR Toolbo for Grouping Chemicals into Categories Developed by LMC, Buk
Documents	Filter endpoint tree	ү 1 [target]	2	3	4 5	6 ✓ GPMT (27 chemicals; 62 data) ✓ Intracutaneous Test (1 chemicals: 1 data)	12
Occument 1 Image: Cocuments 2 Image: Cocument 2 Image: Cocument 2	Structure	- ÇÇ	`@ ₇ @	A.		INLINA (45 chemicalis; 126 data) OMouse Local Lymph Node Assay (LLNA): BrdU-ELISA (1 chemicalis; 4 data) Indpoint Of the financialis; 38 data) Other Endemicalis; 5 data)	5.
G [C: 1;Md: 0;P: 0] Constituent #3 G [C: 1;Md: 0;P: 0] Constituent #3 C Data Gap Filling Settings	Structure info Parameters Physical Chemical Properties Environmental Fate and Transport Ecotoxicological Information Human Health Hazards Acute Toxicity Developmental Toxicity / Teratogenicity Genetic Toxicity Immunotoxicity Inritation / Corrosion Neurotoxicity Photionduced toxicity					Image: State of the state	
	Repeated Dose Toxicity						
Cony endpoint relevant At this position: Select a cell with a rigid (bold) pa Automated workflows Canadradized workflows Canadradized workflows	Sensitisation AW Bespiratory Tract Bespiratory Tract Given for in Chemico Diven in Vivo Diven Buehler Test	WAOP 1/1 1/3 1/8 14/21				Converted data 98 from scale/unit IUCLID6 Picklist PG6-60218 - v1.2 5 from scale/unit Skin sensitization FC3(ratio) 30 from scale/unit Skin sensitization GHS (ordinal) Chemicals 55/64; Data 168/216 Ot Cancel	M: GHS criter
	Trans Semplet Adjunct Tet GPMT GPMT Intractaneous Test UNA Mouse Local Lymph Node Assay (LLN ToxCast	2/2 27/62 1/1 45/126 IA) 1/4		M: not sensitising	M: GHS criteria n M: not sensit		M: Negative M: Negative

1. Go to *Data Gap filling* module;

2. Click on the cell corresponding to Skin Sensitization in Vivo (i.e. in this case we will combine all the data stored under "In vivo" level);

- 3. Click on Read-across button;
- 4. Select scale/unite Skin sensitization II(ECETOC);
- 5. Click **OK** (in this case we mix all endpoints and assays).

Read across prediction of constituent without data Apply read across

Read across prediction of constituent without data Subcategorization

- The initial category could be refined by subcategorizing the analogues according to the "Protein binding alerts for skin sensitization by OASIS" and Structural similarity profilers.
- These steps are summarized in the next screen shots.

Read across prediction of constituent without data Subcategorization by Protein binding alert for SS

3. Remove selected to eliminate dissimilar chemicals, reacting by different protein binding mechanisms;

Read across prediction of constituent without data Subcategorization by Structural similarity

Read across prediction of constituent without data

SAR TOOLBOX ► Inp Gap Filling Workfl	ut	gory definition	Data Gap Filling	► Report									The OECD QSAR To
z 🔝 📼 . 😪	9												for Grouping Chemi into Categories
analysis Read across (Q)SAR Standardized													Developed by LMC,
Documents	Filter endpoint tree	T [target]	2	3	4	5	6	7	8	9	10	11	12 1.
nent 1 : 1;Md: 0;P: 0] Substance [C: 4;Md: 39:P: 1] Composition list ② [C: 1;Md: 0;P: 1] Constituent #1 ▲ [C: 9;Md: 228;P: 1] Ketone	Structure	∼¢¢.	٦٩	A.		ార్సులా	and the second sec		~~• <u>j</u> 2	₩	and a star	na" na"	م ^{کرت} ه و _{مکت} ه
🔺 🌐 [C: 48;Md: 169;P: 1] Data usage o	+ Structure info												
🔺 🔯 [C: 6;Md: 10;P: 1] Subcategor	Parameters												
[C: 4;Md: 7;P: 1] Subcateg [C: 1;Md: 0;P: 0] Constituent #2	Physical Chemical Properties												
(C: 1;Md: 0;P: 0) Constituent #3	Environmental Fate and Transport												
	Ecotoxicological Information Human Health Hazards												
	Acute Toxicity												
	Bioaccumulation												
	Carcinogenicity												
	Developmental Toxicity / Teratogenicity												
	Genetic Toxicity												
	Immunotoxicity												
>	Irritation / Corrosion												
Data Car Ellina Cattinan	Neurotoxicity												
Data Gap Filling Settings	Photoinduced toxicity												
Only endpoint relevant	Repeated Dose Toxicity	•											
this position:	Sensitisation AW SW AC	P. 1/1											
		1/1											
ielect a cell with a rigid (bold) path Automated workflows 0		1/3											
tandardized workflows 0		1/8											
	in Vivo												
	- Buehler Test 14,	/21											M: GHS criteria n
	Freund's Complete Adjuvant Test	2/2											
	_	"÷											M: Negative
	GPMT <or> LLNA</or>	R: Positive											
		1/1											
	- UINA The word covers mudiching for the covertity out #1 coverses										M: Negative		
	Mouse Local Lymph Node Assay ToxCast	The read-across prediction for the constituent #1 generates											
	ToxCast Toxicity to Reproduction	a new level of the endpoint tree.											
	Toxicokinetics, Metabolism and Distribut			anew	ievel		: enut	υπιτι	iee.				
							-						

Outlook

- Background
- Keywords
- Objectives
- The exercise
- Workflow
 - Input
 - Profiling
 - Endpoint
 - Read across prediction of constituent without data
 - Filling data gap for skin sensitization of mixture

Data Gap Filling Overview

- "Data Gap Filling" module gives access to two different data gap filling tools:
 - Independent MOA- all components are with different mode of action
 - Similar MOA- all components are with similar mode of action
- More details about different MOA could be found in F1 help
- In this particular case all components of the current mixture are with dissimilar mode of action. In this respect Independent MOA is applied

Data Gap Filling Independent MOA

Assumption – combined effect can be calculated from the effects caused by the individual mixture components by following the statistical concept of independent random events

Mixture response: $E(\mathbf{e})$

$$C_{Mix}$$
) = 1 - $\prod_{i=1}^{N} [1 - E(C_i)]$

 $E(C_{Mix})$ - the effect provoked by the total mixture

 $E(C_i)$ - the effects that the individual components would cause if applied singly at that concentration at which they are present in the mixture

Problem - dose-response relationships are practically unknown

Data Gap Filling Case study

- In this particular case components of the current mixture have different modes of action (constituent #1 and #3 have same mode, they do not interact with proteins (see slide 32), however constituent #2 interacts with proteins via Schiff-base mechanism). In this respect Independent MOA is applied;
- Application of Independent MOA for this case study is illustrated on the next slides

Filling data gap for skin sensitization of mixture Applying Independent Mode of Action

snapshot above;

- 2. Click on the cell corresponding to this mixture;
- 3. Click on **Composition list** (highlighted) from documented three;
- 4. The latter action automatically activate two mode of actions: Independent MOA and Similar MOA.

Filling data gap for skin sensitization of mixture Applying Independent Mode of Action

	t Profiling Data	Category definition Data Gap Filling	► Report	Possible data inconsistency	The OECD QSAR T
endent MO/ Similar MOA				Metadata ▷ Assay ◢ Endpoint	for Grouping Che into Categories Developed by LM
Documents Cir JMd: 0P: 0] Substance ■ [C4 4Md: 39P: 1] Connection list • © [C: 1Md: 0P: 1] Constituent #1 • [C: 48Md: 196P: 1] Enter of(RA) • II: (C4 48Md: 196P: 1] Enter of(RA) • II: (C4 48Md: 196P: 1] Enter of(RA) • II: (C4 48Md: 196P: 1] Subcategor II: (C4 48Md: 196P: 1] Subcategor © [C: 1Md: 0P: 0] Constituent #2 © [C: 1Md: 0P: 0] Constituent #3	Structure Structure info Parameters Physical Chemical Properties Environmental Fate and Transport Ectoxiciological Information Human Health Hazards Acute Toxicity Developmental Toxicity / Teratogenicity Genetic Toxicity	Parent chemical [target]	Constituent #1	Corr I chemicals; 1 data) I Corr I chemicals; 2 data) I Corr I chemicals; 2 data) I Corr I Corr I Corr	
Data Gap Filling Settings Q Only endpoint relevant At this position: Select a cell with a rigid (bold) path Automated workflows 0 Slandardized workflows 0	Immunotoxicity Irritation / Corrosion Neurotoxicity Photoinduced toxicity Repeated Dose Toxicity Sensitisation AW SW AOP Skin tin Chemico 1// tin Vitro 1/75 tin Vitro 3/14 tin Vitro 1/75	7	R: Positive	IUCLID6 Picklist PG6-60218 Skin Sensitization (Danish A) [0 native data and 4 converted] Skin Sensitization (Danish A) [0 native data and 4 converted] Skin sensitization (Danish A) [0 native data and 2 converted] Skin sensitization (Danish A) [0 native data and 2 converted] Skin sensitization (ES(7ratio) [1 native data and 0 converted] Skin sensitization EG3(ratio) [1 native data and 0 converted] Skin sensitization EG3(ratio) [2 native data and 2 converted] Skin sensitization GHS (ordinal) [2 native data and 2 converted] Skin sensitization GHS (ordinal) [2 native data and 2 converted] Skin sensitization GHS (ordinal) [2 native data and 2 converted] Skin sensitization GHS (ordinal) [2 native data and 2 converted] Skin sensitization GHS (ordinal) [2 native data and 2 converted] Skin sensitization GHS (ordinal) [2 native data and 2 converted] Skin sensitization GHS (ordinal) [2 native data and 2 converted] Skin sensitization GHS (ordinal) [2 native data and 2 converted] Skin sensitization GHS (ordinal)	
2. Select Inde	Cell correspondi pendent MOA; sensitization I	-	n Sensitizatior		Cancel

Filling data gap for skin sensitization of mixture Applying Independent Mode of Action

QSAR.	TOOLBOX	→Input	F ⊐ L J	► Data ► Category det	01010 01 0 10100 inition > Data Gap Fillir	ng ▶ Rep	port			
Gap	Filling	Workflow								The OECD QSAR Toolbox for Grouping Chemicals into Categories
	Documents	Jardized Automated	Filter endpoint tree	Ŷ	Parent chemical [target]	Constituent #1	Constituent #2	Constituent #3		Developed by LMC, Bulgari
 ✓ ❤ Document 1 ✓ ♥ Substand ✓ ♣ Com ♥ C ✓ ♥ C 		Arvl halide (Oroanic	Structure		~~ ک ^{ور} مړه	Н ₃ СОН		0_0		
ଡୁ	 Enter GF(RA) with 30 ch Bata usage options 	nemicals, 66 data poi are changed to: Mau ubcategorized: Protei	Photoinduced t Repeated Dose	Toxicity AW SW AOP		MC. 5 25 - 02 - M				
			in Vitro	1/12 3/6		MS: >2E+03 µM MS: Negative	R: Positive	MS: Category C		
<		>	Toxicity to Repr Toxicokinetics,	oduction . Metabolism and Distributi						>
	Data Gap Filling Setting	5	Descriptors		Empirical calcu Predicted: Neg		C3, Skin sensitisati	ion, based on 6 values	5	Select / filter data
✓ Only endpoin At this position QSARs Automated w Standardized	on: vorkflows	0 0 0	Prediction	Positive						Descriptors / data Calculation options Visual options
In nodes belo	w:			Skin						Information
QSARs Automated v Standardized		0 0 0		CNegative ≪ 4	1.5	2	2.5 log Kow	3	3.5	Miscellaneous
				Active descriptor X log Kow	Ŷ					Accept prediction
	Deede		and fa	r the mixture		and The st		Made	- C A - L')	

Filling data gap for skin sensitization of mixture Applying Independent Mode of Action

The OECD (Q)SAR Toolbox for Grouping Chemicals into Categories

Filling data gap for skin sensitization of mixture Applying Independent Mode of Action

Outlook

- Background
- Keywords
- Objectives
- The exercise

Workflow

- Input
- Profiling
- Endpoint
- Read across prediction of constituent without data
- Filling data gap for skin sensitization of mixture

• Generating report for mixture The OECD (Q)SAR Toolbox for Grouping Chemical's into Categories

Report

- Remember the report module allows the user to generate a report on the predictions performed with the Toolbox.
- The report can be printed or saved in different formats.
- Generating the report is shown on next screenshots.

Report

- 1. Go to **<u>Report</u>** section;
- 2. Click on the cell corresponding to IMOA prediction;
- 3. Click **Prediction** button. A wizard appears where the user could customize the sections;
- 4. Click Create report.
- 5. Click **OK** on the appeared message; Two reports are generated: one summary report for the mixture and one for the read-across prediction for the constituent #1.
- 6. Select prediction of mixture and click Open button.

Report

Outlook

- Background
- Keywords
- Objectives
- The exercise
- Workflow
- Save the prediction result

Saving the prediction result

- Saving functionality allows storing/restoring the current state of Toolbox documents including loaded chemicals, experimental data, profiles, predictions, etc.
- This functionality is implemented based on saving the sequence of actions that led to the current state of the Toolbox document and later executing these actions in the same sequence in order to get the same result(s).
- Saving the file with TB prediction is illustrated on next screenshot.

Saving the prediction result

