QSAR TOOLEOX

The OECD QSAR Toolbox for Grouping Chemicals into Categories

OECD (Q)SAR Toolbox v.4.4.1

Example for predicting Skin Sensitization of a mixture with known components

- Background
- Keywords
- Objectives
- The exercise
- Workflow
- Save the prediction

Background

This is a step-by-step presentation designed to take the user of the Toolbox through the workflow for prediction of skin sensitization of a mixture.

- Background
- Keywords
- Objectives
- The exercise
- Workflow
- Save the prediction

Keywords

TARGET CHEMICAL - chemical of interest, in this case it is a mixture with defined components

MODULE – a Toolbox module is a section dedicated to specific actions and options (e.g. Profiling)

WORKFLOW – the use, in combination, of the different modules (e.g. prediction workflow: from input to report)

PROFILER - algorithm (rule set) for the identification of specific features of the chemicals. Several types of profilers are available, such as structural (e.g. Organic functional groups), mechanistic (e.g. Protein binding by OECD) and endpoint-specific (e.g. in vitro in vitro mutagenicity (Ames test) alerts by ISS) profilers.

ALERT - the profilers consist of sets of rules or alerts. Each of the rules consists of a set of queries. The queries could be related to the chemical structure, physicochemical properties, experimental data, comparison with the target or list with substances and external queries from other predefined profilers (reference queries).

CATEGORY – "group" of substances sharing same characteristics (e.g. the same functional groups or mode of action). In a typical Toolbox workflow, it consists of the target chemical and its analogues gathered according to the selected profilers

ENDPOINT TREE – Endpoints are structured in a branched scheme, from a broader level (Phys-Chem properties, Environmental Fate and transport, Ecotoxicology, Human health hazard) to a more detailed one (e.g. EC3 in LLNA test under Human health hazard-Skin sensitization)

DATA MATRIX – Table reporting the chemical(s) and data (experimental results, profilers outcomes, predictions). Each chemical is in a different column and each data in a different row

- Background
- Keywords
- Objectives
- The exercise
- Workflow
- Save the prediction

Objectives

 This presentation reviews a number of functionalities of the Toolbox:

- 2D editor for defining Mixture components
- Filling data gaps by Independent mode approach

- Background
- Keywords
- Objectives
- The exercise
- Workflow
- Save the prediction

Exercise

- \succ In this exercise we will:
 - predict skin sensitization of target substance, which represent a mixture with defined constituents
 - Investigate the mode of action for each component of the mixture,
 - Gather available experimental data for target chemical,
 - Investigate skin sensitization of non-tested component,
 - Apply read across for non-tested component, and
 - Predict skin sensitization potential of mixture based on experimental data of tested compounds and predicted data of non-tested one.
- \succ The target substance will consists of three constituents:

- Background
- Keywords
- Objectives
- The exercise
- Workflow
- Save the prediction

Workflow

- The Toolbox has six modules which are used in a sequential workflow:
 - Input
 - Profiling
 - Data
 - Category Definition
 - Data Gap Filling
 - Report

- Background
- Keywords
- Objectives
- The exercise
- Workflow
 - Input

Chemical Input Overview

- This module provides the user with several means of entering the chemical of interest or the target chemical.
- Since all subsequent functions are based on chemical structure, the goal here is to make sure the molecular structure assigned to the target chemical is the correct one.

Chemical Input Ways of Entering a mixture

User alternatives for defining mixtures with known compositions:

- A. Single target substance
 - Chemical Name
 - Chemical Abstract Services (CAS) number (#)
 - SMILES (simplified molecular information line entry system) notation/InChi
 - Drawing mixture constituents and defining their quantities
 - Select from User List/Inventory/Databases

B. Group of chemicals

- User List/Inventory
- Specialized Databases

Chemical Input Input Screen

Input Input a mixture

- In the current example our target substance will be a mixture.
- We will draw its components within the "Composition" tool.

Chemical input Input target substance by drawing

QSAR 1001	
Document Image: Close Save Image: Close CAS# Documents Documents Image: Close Save CAS# Document 1 Image: Close Save Save<	Single rhandied Name Structur Composition Select C 2 Constituents (0) Impurities (0) Additives (0) Constituents (0) Impurities (0) Additives (0) 4 Add Remove
 Click on <u>Input</u> m Click on Composition From composition Click Add in order click three times on 	odule; ition; editor select type: Multiconstituent; er to add constituent. Our target substance consists of three constituents, so the Add button.

QSAR TOOLEOX

Chemical input

Constituent 1

Drawing Constituent 1 of the target mixture

		● 2D Editor – □ ×
Composition editor	2	SMILES/Inchi V 0
	CAS:	
	Type: Multiconstituent Name:	Rectangle ·
	IUPAC: Synonyms:	
	SMILES:	Clear All X
Constituents (1) Impu	urities (0) Additives (0)	C OH2
OH ₂	CAS:	N Want to clear everything?
	IUPAC: Synonyms: Edit SMILES: O Edit	F P
1	Concentration	CL Br
	Concentration range	OK Cancel
	v Family: Mass V	
	ОК	Cancel

- 1. Click **Edit** on the SMILES row to define the structure of the first constituent;
- 2. The 2D editor appears;
- 3. Click the **Clean button** to clean everything.
- 4. Confirm with **Yes**.

Constituent 1

Drawing Constituent 1 of the target mixture

2D Editor		– 🗆 X
\odot		
Smiles ~ CCCCO		X
Snap Line	Object explor	er X
	Atom: O	
	1	
	Element:	0 ~
C H3C CH	Charge:	0 ~
Ν	Hybridization:	undefined V
	Valent state:	V4 Ÿ
5 3	Isotope:	0
F	Implicit hydrogens:	3
Р	Atom number:	6
	Aromatic:	False
1. Select the Drawing tool;	Parity:	None ~
2. Draw carbon chain with five carbon atoms;	Radical:	undefined
3. Click on the oxygen symbol (i.e. \mathbf{U});		5
4. Click over the last carbon atom to change it to oxygen;		
5. Confirm with OK .		OK 🖌 Cancel

Constituent 2

Drawing Constituent 2 of the target mixture

_									
Composition edi	tor			2D Editor	3	3		_	D X
	Identity —	2		II FS/Inchl v 0					X
	CAS:	Multi-constituent	-						A
	Type:	Multiconstituent		· 🥒 🖊					
	INAME:			Rectangle Y					
	Synonyms:								
	SMILES:								
Constituents (3) In	purities (0) Addit	ives (0)			回 c	lear All	×		
	11.05	^		1					
	CAC			OH ₂					
OH ₂	CAS:					Want to clear everything?			
	Newsy N	ionoconstituent *	N						
	IUPAC:		0				_		
	Synonyms:	Fdit	S	i l	\square	Yes No			
	SMILES: 0	Edit			Α				
2		1			4				
_	- Concentration -		Р		\square				
	- Typical conce	entration —	Cl						
	~	Family: Mass fraction v Unit: v	Br						
	Concentratio							OK	Cancol
	Concentratio								Cancer
	~	Family: Mass fraction Unit:							
		4	/						
		ОК		Cancel					

Now we move down to the second constituent and repeat the same steps:

- 1. Click Edit on the SMILES row to define the structure of the second constituent;
- 2. The 2D editor appears;
- 3. Click the **Clean button** to clean everything.
- 4. Confirm with **Yes**.

Constituent 2

Drawing Constituent 2 of the target mixture

2D Editor	– 🗆 X
\odot	
Smiles V C1=CC(=C(C(=C1C(C)=O)CI)CI)CI	X
R 2a Ia Ia	Select the <i>Benzene scaffold</i> (1a) and paste it into the drawing pane (1b). Select the <i>Drawing tool</i> (2a) and draw the connections to the benzene (2b). Second click over a bonds converts it to double bond. Click on the oxygen symbol (i.e. O) (3a) and click over the carbon atom connected with double bond (3b). Click on the chlorine symbol (i.e. CI) (4a) and click over the carbon atoms that should be changed (3b). Confirm with OK (5).
S B B B B B B B B B B B B B B B B B B B	Isotope: 0 Implicit hydrogens: 3
	Atom number: 0
4a a	Aromatic: False
Br.	Parity: None
	Radical: undefi 5
	OK Cancel

QSAR TOOLEOX

Chemical input Drawing Constituent 3 of the target mixture

Constituent 3

Composition editor Compos						\bigcirc			
Identity Cas: Name: UVAC: Smiths Smiths Constituents (3) Identity Constituents (3) Identity Identity Constituents (3) Identity	Composition editor			2D Editor		3		-	o x
CAS: Type:: Witiconstituent UUAC: Synonyma: Synony		Identity	2	SMILES/Inchl ~ C		\sum			X
Type: Multiconstituent Name: Name: Name: Name: Synonyme: Synonyme: ShillEs: Impurities (0) Constituents (3) Impurities (0) OH2 Chear All CAS: Impurities (0) Type: Monoconstituent Name: Impurities (0) OH2 Concentration Impurities (0) Impurities (0) Concentration Impurities (0) Impurities (0)		CAS:				ÍDE			
Name: UPAC: SMLES: Constituents (3) Impurities (0) Additives (0) OH2 OH2 OH2 OH2 OH2 OH2 OH2 OH		Type:	Multiconstituent			1 Ge			
UNAC: Synonyme: SMLES: Constituents (3) Impunities (0) Additives (0) OH2 OH2 Impunities (0) Additives (0) OH2 Impunities (0) Additives (0) OH2 Impunities (0) Additives (0) Impunities (0) Additives (0) Additi		Name:		Rectangle	<u>~</u>				
Synonyms: SMILES: Constituents (3) Impurities (0) Additives (0) Chasting (0) Additives (0) Additi		IUPAC:							
SMILES: Constituents (3) Impurities (0) Additives (0) OH2 Identify CAS: Name: IUPAC: Symparyms: SMILES: Concentration Typical concentration Typical concentration Typical concentration Femily: Mass fraction Unit OK Cencel		Synonyms:							
Constituents (3) Impurities (0) Additives (0) Cht2 Case: C		SMILES:						_	
OH2 dentity CAS: Type: Monoconstituent Name: UDAC: SMILES: 0 Concentration Typical concentration Concentration Typical concentration Concentration Typical concentration Con	Constituents (3) Impur	tion (0) Additio	(D)			🦲 Clear A	an X		
OH2 Identify CAS: Image: Case in the	Constituents (5) Impur	ties (0) Additiv	res (0)						
OH2 CAS: Type: Monoconstituent Name: IUPAC: Synonyms: SMILES: O Concentration Typical concentration Concentration range Concentration range Conce	clo	lentity			OH2				
OH2 Type: Monoconstituent Name: UIPAC: Synonyms: SMLES: 0 Concentration Typical concentration Concentration Concentration Typical concentration Concentration range Concentration range		AS:					Want to clear everything?		
3 Concentration Typical concentration Concentration range Concentration range Concentrat	OH ₂	vpe: M	onoconstituent	Ν	_	_ /			
3 Concentration Typical concentration Concentration range Concentration range Concentrat		lame:		0		• Y_			
3 Concentration Typical concentration Concentration range Concentration range Concentrat		JPAC:		S	4	4 [🗌	Yes No		
3 Concentration Typical concentration Concentration Family: Mass fraction v Unit: Concentration range Family: Mass fraction v Unit: Family: Mass fraction v Unit:	9	ynonyms:	Edit					-	
3 Concentration Typical concentration Concentration range CI Br OK Cancel	9	MILES: O	Edit	F					
Concentration	3		1	Р					
Concentration range				CI					
Concentration range		- lypical concer	tration						
Concentration range		~	Family: Mass fraction VInit: View	Br					
Concentration range		Concentration						ОК	Cancel
V Family: Mass fraction V Unit: V		Concentration							
		~	Family: Mass fraction Unit:						
v				\vee					
OK Cancel			OK	Cancel					

Now we move down to the last (third) constituent and repeat the same steps:

- 1. Click Edit on the SMILES row to define the structure of the second constituent;
- 2. The 2D editor appears;
- 3. Click the **Clean button** to clean everything.
- 4. Confirm with **Yes**.

Drawing Constituent 3 of the target mixture

Constituent 3

Chemical input Target substance identity

Chemical input Mixture decomposition

- In the current example we will predict the skin sensitization of a mixture based on its constituents.
- A specific option "Decomposition" allows all constituents of a mixture as well as available additives/impurities to be shown in the data matrix.
- Once the constituents are on the data matrix, the user can handle them as individual substances and further, to use them for predicting the whole mixture.

QSAR TOOLEOX

Chemical input Input mixture

Chemical Input Target chemical identity

- The already drawn target structures automatically appear on the data matrix.
- Note that no CAS number or name is associated with this chemical.
- This means the target chemical is not listed in the chemical inventories/databases available in Toolbox (see next slide).

Chemical Input Target chemical identity

- Background
- Keywords
- Objectives
- The exercise
- Workflow
 - Input
 - Profiling

Profiling Overview

- "Profiling" refers to the electronic process of retrieving relevant information on the target compound, other than environmental fate, ecotoxicity and toxicity data, which are stored in the Toolbox database.
- Available information includes likely mechanism(s) of action, as well as observed or simulated metabolites.
- For most of the profilers, background information can be retrieved by highlighting one of the profilers (for example, Protein binding alerts for SS by OASIS and clicking on "About" or "View" (see next screen shots).

Profiling Side-Bar to Profiling

The **View** button provides OSAR TOOLBOX more details on the coded 2 knowledge in the profiler. \odot Documents Protein binding alerts for skin sensitization by OASIS (Endpoint Specific) - Profiling Scheme Browser _ \times Profiling methods ~ 8 Selected Optic Save Scheme Export Scheme Save Tests View Tests Run All Tests Select All Unselect All Invert About Opt Definition Properties Training Set Literature MetaInfo Table Scheme Ionization at pH = 1 Ionization at pH = 4 Filter Category tree Ionization at pH = 7.4 [106] Amides Ionization at pH = 9 Protein binding alerts for skin sensitization by Acvlation (Thio)carbamoylation of protein nucleo Isocyanates, Isothiocyanates Acyl transfer via nucleophilic addition Query details Carbodiimides Toxic hazard classification by Crame [0] Structure Query Metabolism Direct acylation involving a leaving gro Toxic hazard classification by Cramer (extended) (Thio)Acetates Ultimate biodeo SMARTS Contents (Thio)Acyl and (thio)carbamoyl halic Uncouplers (MITOTOX) Oueries
 Oueries
 c[#7h][#6](=[#8])c Anhydrides (sulphur analogues of a Edit Endpoint Specific Search 1: SMARTS Acute aquatic toxicity classification by Verhaar (Modified) Azlactones and unsaturated lactone Masks Acute aquatic toxicity MOA by OASIS Carbamates Navigation mode: Cascade Facade Search 1: SMARTS Acute Oral Toxicit Diacyl peroxides, anhydrides (sulph Search 2: SMARTS N-Acylloxysuccinimides nulation - metabolism ale N-Carbonyl heteroaryl amines Bioaccumulation - metabolism half-lives N-Carb Biodegradation fragments (BioWIN MITI) N-Halo 3 Carcinogenicity (genotox and nongenotox) alerts by ISS Phosph anides DART scheme Add Query Sulpho DNA alerts for AMES, CA and MNT by OASIS Remove Thiosul Eye irritation/corrosion Exclusion rules by BfR Add Mask Thiosu Eve irritation/corrosion Inclusion rules by BfR Ester amin Complex search options in vitro mutagenicity (Ames test) alerts by ISS in vivo mutagenicity (Micronucleus) alerts by ISS Exact connectivity Dithiocarbamate salts Dithiocarbamates cologic Primary Classification Ignore stereo information Dithioesters otein binding alerts for Chromo Exact match Ester aminolysis or thiolysis Protein binding alerts for skin sensitization by OASIS Activated (di)aryl esters Queries execution mode All Activated (thio)esters Activated alkyl diesters Mapping Retinoic Acid Receptor Binding Benzyl or phenethyl salicylates Unique mappings rtER Expert System - USEPA Phenyl carbonates Skin irritation/corrosion Exclusion rules by BfR Max maps 1000 Substituted benzyl benzoates Skin irritation/corrosion Inclusion rules by BfR Isocyanates and related chemicals Empiric Toxicological

- 1. Selected profiler related to the investigated endpoint: Protein binding alerts for SS by OASIS;
- 2. Click on the "View" button;
- 3. Click for example on category **Amides** to see the structural boundaries used to code the knowledge.

Profiling Side-Bar to Profiling

	Profiling > Data > Category definition > Data Gap Filling > Report
Custom profile Opply Opel View Delete	
Documents Documents Profiling methods Options 22 Selected f Select All Unselect All Invert About Options rule aqualic concert mon by Oncore (Concert)	Structure $\frac{1}{\alpha_1 \alpha_2} = \frac{1}{\alpha_2 \alpha_3} + \frac{1}{\alpha_3 \alpha_4} + \frac{1}{\alpha_4 \alpha_4} + $
Acute Oral Toxicity Aquatic toxicity classification by ECOSAR Bioaccumulation - metabolism alerts Bioaccumulation - metabolism alerts Biodegradation fragments (BioWIN MITI) Carcinogenicity (genotox and nongenotox) alerts by DART scheme DNA alerts for AMES, CA and MNT by OASIS Eye irritation/corrosion Exclusion rules by BfR in vitro mutagenicity (Ames test) alerts by ISS Fire irritation/corrosion Inclusion rules by BfR in vitro mutagenicity (Ames test) alerts by ISS Keratinocyte gene expression Coscibigit Princip Classification Protein binding alerts for skin sensitization by OASIS V Protein binding alerts for skin sensitization by OASIS Protein binding alerts for skin sensitization by OASIS Protein binding alerts for skin sensitization by OASIS V Protein binding alerts for skin sensitization by OASIS V Protein binding Potency h-CLAT Stan irritation/corrosion Exclusion rules by BfR Skin irritation/corrosion Exclusion rules by BfR Skin irritation/corrosion Inclusion rules by BfR	 Environmental Fate and Transport Ecotoxicological Information Human Health Hazards Acute Toxicity ADME Bioaccumulation Carcinogenicity Developmental Toxicity / Teratogenicity Genetic Toxicity Immunotoxicity Immunotoxicity Infritation / Corrosion Neurotoxicity Photoinduced toxicity Sensitisation AW SW AOP Toxicity to Reproduction Toxicity to Reproduction Toxicity Retabolism and Distributi
Groups of elements Lipinski Rule Oass Organic functional groups Organic functional groups (nested) Organic functional groups (US EPA) Organic functional groups, Norbert Haider (checkmol Sudduate Sandardy Tautomers unstable Toxicological Repeated dose (HESS)	 Position the cursor on the level of "Sensitization"; Select the most plausible profilers related to the target endpoint (in our case the orange highlighted); Click Apply.

Profiling Profiling the target substance

- The actual profiling will take several seconds depending on the number and type of selected profilers.
- The results of profiling automatically appear as a dropdown box under the target substance.
- In this example the target mixture and its constituents are profiled by all profilers defined as plausible (highlighted in orange) for skin sensitization (only endpoint-specific are listed here):
 - Aquatic toxicity classification by ECOSAR;
 - Keratinocyte gene expression;
 - Protein binding alerts for skin sensitization according to GHS
 - Protein binding alerts for skin sensitization by OASIS
 - Protein binding potency h-CLAT
 - Respiratory sensitization

Profiling Profiling the target substance

QSAR TOOLBOX	Profiling ▶ Data ▶ Category de	01010 01 0 10100	► Report		
Profiling Custom profile					
Documents	Filter endpoint tree 🍸	Parent chemical [target]	Constituent #1	Constituent #2	Constituent #3
Profiling methods Options 22 Selected Select All Unselect All Invert About Options Acuse equate coacies more of oncours Acuse of acuse of the order of the o	Structure	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	H ₃ C~~~OH		ÔŢÔ
Aquatic toxicity classification by ECOSAR Bioaccumulation - metal Bioaccumulation - metal Biodegradation fragmen Cristingenpitry (apparted and pagenetics) alors NU	n the profiling results	s for the ta	rget mixt	ture and i	its individual
DART scheme					
DNA alerts for AMES, CA and MNT by OASIS		Not categorized	Not categorized	Not categorized	Not categorized
Eve irritation/corrosion Exclusion rules by BfR			The state of the second s	the second second by the ball ball the ball	and a second definition of the level of the
	Eulectance tune	Mixture	Discrete chemical	Discrete chemical	Discrete chemical
Eye irritation/corrosion Inclusion rules by BfR	Substance type	Mixture	Discrete chemical	Discrete chemical	Discrete chemical
Eye irritation/corrosion Inclusion rules by BfR in vitro mutagenicity (Ames test) alerts by ISS in vitro mutagenicity (Micronucleue) alerte by ISS	Substance type US-EPA New Chemical Categories	Mixture Neutral Organics	Discrete chemical Neutral Organics	Discrete chemical Neutral Organics	Discrete chemical Neutral Organics
Eye irritation/corrosion Inclusion rules by BfR in vitro mutagenicity (Ames test) alerts by ISS in vivo mutagenicity (Micronucleus) alerts by ISS V Kerstinoccte gene expression	Substance type US-EPA New Chemical Categories	Mixture Neutral Organics	Discrete chemical Neutral Organics	Discrete chemical Neutral Organics	Discrete chemical Neutral Organics
Eye irritation/corrosion Inclusion rules by BfR in vitro mutagenicity (Ames test) alerts by ISS in vivo mutagenicity (Micronucleus) alerts by ISS Keratinocyte gene expression Oncologic Primary Classification	Substance type US-EPA New Chemical Categories General Mechanistic Protein binding by OASIS	Mixture Neutral Organics Schiff base formation	Discrete chemical Neutral Organics No alert found	Discrete chemical Neutral Organics Schiff base formation	Discrete chemical Neutral Organics No alert found
Eye irritation/corrosion Inclusion rules by BfR in vitro mutagenicity (Ames test) alerts by ISS in vivo mutagenicity (Micronucleus) alerts by ISS Keratinocyte gene expression Oncologic Primary Classification Protein binding alerts for Chromosomal aberration by	Substance type US-EPA New Chemical Categories General Mechanistic Protein binding by OASIS Protein binding by OECD	Mixture Neutral Organics Schiff base formation No alert found	Discrete chemical Neutral Organics No alert found No alert found	Discrete chemical Neutral Organics Schiff base formation No alert found	Discrete chemical Neutral Organics No alert found No alert found
Eye irritation/corrosion Inclusion rules by BfR in vitro mutagenicity (Ames test) alerts by ISS in vivo mutagenicity (Micronucleus) alerts by ISS Vieratinocyte gene expression Oncologic Primary Classification Protein binding alerts for chromosomal aberration by Vieration binding alerts for skin sensitization according	Substance type US-EPA New Chemical Categories General Mechanistic Protein binding by OASIS Protein binding by OECD Protein binding potency Cys (DPRA 13	Mixture Neutral Organics Schiff base formation No alert found DPRA less than 9% (DPRA	Discrete chemical Neutral Organics No alert found No alert found DPRA less than 9% (D	Discrete chemical Neutral Organics Schiff base formation No alert found Out of mechanistic do	Discrete chemical Neutral Organics No alert found No alert found DPRA less than 9% (DP.,
Eye irritation/corrosion Inclusion rules by BfR in vitro mutagenicity (Ames test) alerts by ISS in vivo mutagenicity (Micronucleus) alerts by ISS Vieratmocyte gene expression Oncologic Primary Classification Protein binding alerts for Kin sensitization according Protein binding alerts for skin sensitization according Protein binding alerts for skin sensitization by OASIS	Substance type US-EPA New Chemical Categories General Mechanistic Protein binding by OASIS Protein binding by OECD Protein binding potency Cys (DPRA 13 Protein binding potency GSH	Mixture Neutral Organics Schiff base formation No alert found DPRA less than 9% (DPRA Not possible to classify acc	Discrete chemical Neutral Organics No alert found No alert found DPRA less than 9% (D Not possible to classif	Discrete chemical Neutral Organics Schiff base formation No alert found Out of mechanistic do Not possible to classify	Discrete chemical Neutral Organics No alert found No alert found DPRA less than 9% (DP., Not possible to classify
Eve irritation/corrosion Inclusion rules by BfR in vitro mutagenicity (Ames test) alerts by ISS in vivo mutagenicity (Micronucleus) alerts by ISS V Keratmocyte gene expression Oncologic Primary Classification Protein binding alerts for Chromosomal aberration by V Protein binding alerts for skin sensitization according V Protein binding alerts for skin sensitization according V Protein binding alerts for skin sensitization by OASIS V Protein Binding Potency h-CLAT	Substance type US-EPA New Chemical Categories Protein binding by OASIS Protein binding by OECD Protein binding potency Cys (DPRA 13 Protein binding potency GSH Protein binding potency Lys (DPRA 13%)	Mixture Neutral Organics Schiff base formation No alert found DPRA less than 9% (DPRA DPRA less than 9% (DPRA	Discrete chemical Neutral Organics No alert found DPRA less than 9% (D DPRA less than 9% (D	Discrete chemical Neutral Organics Schiff base formation No alert found Out of mechanistic do Not possible to classify DPRA less than 9% (DP	Discrete chemical Neutral Organics No alert found DPRA less than 9% (DP.,, Not possible to classify DPRA less than 9% (DP.,,
Eye irritation/corrosion Inclusion rules by BfR in vitro mutagenicity (Ames test) alerts by ISS in vivo mutagenicity (Micronucleus) alerts by ISS V Keratmocyte gene expression Oncologic Primary Classification Protein binding alerts for Chromosomal aberration by V Protein binding alerts for skin sensitization according V Protein binding alerts for skin sensitization according V Protein Binding Potency h-CLAT V Respiratory sensitisation Retinoic Acid Recentor Binding	Substance type US-EPA New Chemical Categories Protein binding by OASIS Protein binding by OECD Protein binding potency Cys (DPRA 13 Protein binding potency Lys (DPRA 13%) Endpoint Specific	Mixture Neutral Organics Schiff base formation No alert found DPRA less than 9% (DPRA DPRA less than 9% (DPRA	Discrete chemical Neutral Organics No alert found DPRA less than 9% (D DPRA less than 9% (D	Discrete chemical Neutral Organics Schiff base formation No alert found Out of mechanistic do Not possible to classify DPRA less than 9% (DP	Discrete chemical Neutral Organics No alert found DPRA less than 9% (DP., DPRA less than 9% (DP., DPRA less than 9% (DP.,
Eye irritation/corrosion Inclusion rules by BfR in vitro mutagenicity (Ames test) alerts by ISS in vivo mutagenicity (Micronucleus) alerts by ISS V Keratinocyte gene expression Oncologic Primary Classification Protein binding alerts for Chromosomal aberration by Protein binding alerts for skin sensitization according V Protein Binding Potency h-CLAT Respiratory sensitisation Retinoic Acid Receptor Binding intER Expert System - USEPA	Substance type US-EPA New Chemical Categories Protein binding by OASIS Protein binding by OECD Protein binding potency Cys (DPRA 13 Protein binding potency GSH Protein binding potency Lys (DPRA 13%) Endpoint Specific Aquatic toxicity classification by ECOS	Mixture Neutral Organics Schiff base formation No alert found DPRA less than 9% (DPRA DPRA less than 9% (DPRA Neutral Organics	Discrete chemical Neutral Organics No alert found DPRA less than 9% (D, DPRA less than 9% (D, Neutral Organics	Discrete chemical Neutral Organics Schiff base formation No alert found Out of mechanistic do Not possible to classify DPRA less than 9% (DP Neutral Organics	Discrete chemical Neutral Organics No alert found No alert found DPRA less than 9% (DP.,, DPRA less than 9% (DP.,, Neutral Organics
Eye irritation/corrosion Inclusion rules by BfR in vitro mutagenicity (Ames test) alerts by ISS in vivo mutagenicity (Micronucleus) alerts by ISS V Keratinocyte gene expression Oncologic Primary Classification Protein binding alerts for chromosomal aberration by Protein binding alerts for skin sensitization according Protein Binding Paters for skin sensitization by OASIS Protein Binding Potency h-CLAT Respiratory sensitisation Retinoic Acid Receptor Binding rtER Expert System - USEPA Skin irritation/corrosion Exclusion rules by BfR	Substance type US-EPA New Chemical Categories Protein binding by OASIS Protein binding by OECD Protein binding potency Cys (DPRA 13 Protein binding potency GSH Protein binding potency Lys (DPRA 13%) Endpoint Specific Aquatic toxicity classification by ECOS Keratinocyte gene expression	Mixture Neutral Organics Schiff base formation No alert found DPRA less than 9% (DPRA DPRA less than 9% (DPRA Neutral Organics Not possible to classify acc	Discrete chemical Neutral Organics No alert found DPRA less than 9% (D., Not possible to classif DPRA less than 9% (D., Neutral Organics Not possible to classif	Discrete chemical Neutral Organics Schiff base formation No alert found Out of mechanistic do Not possible to classify DPRA less than 9% (DP Neutral Organics Not possible to classify	Discrete chemical Neutral Organics No alert found DPRA less than 9% (DP., Not possible to classify DPRA less than 9% (DP., Neutral Organics Not possible to classify
Eye irritation/corrosion Inclusion rules by BfR in vitro mutagenicity (Ames test) alerts by ISS in vivo mutagenicity (Micronucleus) alerts by ISS Keratinocyte gene expression Oncologic Primary Classification Protein binding alerts for chromosomal aberration by Protein binding alerts for skin sensitization according Protein binding alerts for skin sensitization by OASIS Protein Binding Potency h-CLAT Retinoic Acid Receptor Binding rtER Expert System - USEPA Skin irritation/corrosion Exclusion rules by BfR	Substance type US-EPA New Chemical Categories Protein binding by OASIS Protein binding by OECO Protein binding potency Cys (DPRA 13 Protein binding potency Lys (DPRA 13%) Endpoint Specific Aquatic toxicity classification by ECOS Keratinocyte gene expression Protein binding alerts for skin sensitiz	Mixture Neutral Organics Schiff base formation No alert found DPRA less than 9% (DPRA DPRA less than 9% (DPRA DPRA less than 9% (DPRA Neutral Organics Not possible to classify acc No alert found	Discrete chemical Neutral Organics No alert found DPRA less than 9% (D., Not possible to classif DPRA less than 9% (D., Neutral Organics Not possible to classif No alert found	Discrete chemical Neutral Organics Schiff base formation No alert found Out of mechanistic do Not possible to classify DPRA less than 9% (DP Neutral Organics Not possible to classify Not possible to classify No alert found	Discrete chemical Neutral Organics No alert found DPRA less than 9% (DP., Not possible to classify DPRA less than 9% (DP., Neutral Organics Not possible to classify No alert found
Eye irritation/corrosion Inclusion rules by BfR in vitro mutagenicity (Ames test) alerts by ISS in vivo mutagenicity (Micronucleus) alerts by ISS Veratinocyte gene expression Oncologic Primary Classification Protein binding alerts for Chromosomal aberration by Protein binding alerts for Skin sensitization according Protein binding alerts for skin sensitization according Protein Binding Potency h-CLAT Retinoic Acid Receptor Binding rtER Expert System - USEPA Skin irritation/corrosion Exclusion rules by BfR Skin irritation/corrosion Inclusion rules by BfR	Substance type US-EPA New Chemical Categories Protein binding by OASIS Protein binding by OECD Protein binding potency Cys (DPRA 13 Protein binding potency GSH Protein binding potency Lys (DPRA 13%) Endpoint Specific Aquatic toxicity classification by ECOS Keratinocyte gene expression Protein binding alerts for skin sensitiz	Mixture Neutral Organics Schiff base formation No alert found DPRA less than 9% (DPRA Not possible to classify acc DPRA less than 9% (DPRA Neutral Organics Not possible to classify acc No alert found Schiff base formation	Discrete chemical Neutral Organics No alert found DPRA less than 9% (D Not possible to classif DPRA less than 9% (D Neutral Organics Not possible to classif No alert found No alert found	Discrete chemical Neutral Organics Schiff base formation No allert found Out of mechanistic do Not possible to classify DPRA less than 9% (DP Neutral Organics Not possible to classify No alert found Schiff base formation	Discrete chemical Neutral Organics No alert found DPRA less than 9% (DP., Not possible to classify DPRA less than 9% (DP., Neutral Organics Not possible to classify No alert found No alert found
Eye irritation/corrosion Inclusion rules by BfR in vitro mutagenicity (Ames test) alerts by ISS in vivo mutagenicity (Micronucleus) alerts by ISS Vieratinocyte gene expression Oncologic Primary Classification Protein binding alerts for skin sensitization according Vieroten Binding Potency h-CLAT Vieroten Binding Potency h-CLAT Vieroten Binding Potency h-CLAT Vieroten Binding Potency h-CLAT Skin irritation/corrosion Exclusion rules by BfR Skin irritation/corrosion Inclusion rules by BfR Vierotencia Science	Substance type US-EPA New Chemical Categories General Mechanistic Protein binding by OASIS Protein binding by OECD Protein binding potency Cys (DPRA 13 Protein binding potency GSH Protein binding potency Lys (DPRA 13%) Endpoint Specific Aquatic toxicity classification by ECOS Keratinocyte gene expression Protein binding alerts for skin sensitiz Protein binding alerts for skin sensitiz	Mixture Neutral Organics Schiff base formation No alert found DPRA less than 9% (DPRA Not possible to classify acc DPRA less than 9% (DPRA Neutral Organics Not possible to classify acc No alert found Schiff base formation No alert found	Discrete chemical Neutral Organics No alert found DPRA less than 9% (D Not possible to classif DPRA less than 9% (D Neutral Organics Not possible to classif No alert found No alert found No alert found	Discrete chemical Neutral Organics Schiff base formation No alert found Out of mechanistic do Not possible to classify DPRA less than 9% (DP Neutral Organics Not possible to classify No alert found Schiff base formation No alert found	Discrete chemical Neutral Organics No alert found DPRA less than 9% (DP., Not possible to classify DPRA less than 9% (DP., Neutral Organics Not possible to classify No alert found No alert found No alert found
Eye irritation/corrosion Inclusion rules by BfR in vitro mutagenicity (Ames test) alerts by ISS in vivo mutagenicity (Micronucleus) alerts by ISS Vieratinocyte gene expression Oncologic Primary Classification Protein binding alerts for skin sensitization according Protein binding alerts for skin sensitization according Protein Binding Potency h-CLAT Respiratory sensitisation Retinoic Acid Receptor Binding trER Expert System - USEPA Skin irritation/corrosion Inclusion rules by BfR Skin irritation/corrosion Inclusion rules by BfR Chemical elements Groups of elements Groups of elements	Substance type US-EPA New Chemical Categories Protein binding by OASIS Protein binding by OCD Protein binding potency Cys (DPRA 13 Protein binding potency GSH Protein binding potency GSH Protein binding potency Lys (DPRA 13%) Endpoint Specific Aquatic toxicity classification by ECOS Keratinocyte gene expression Protein binding alerts for skin sensitiz Protein binding alerts for skin sensitiz Protein binding Potency fr-CCAT Respiratory sensitiation	Mixture Neutral Organics Schiff base formation No alert found DPRA less than 9% (DPRA Not possible to classify acc DPRA less than 9% (DPRA Neutral Organics Not possible to classify acc No alert found Schiff base formation No alert found	Discrete chemical Neutral Organics No alert found DPRA less than 9% (D., Not possible to classif DPRA less than 9% (D., Neutral Organics Not possible to classif No alert found No alert found No alert found	Discrete chemical Neutral Organics Schiff base formation No afert found Out of mechanistic do Not possible to classify DPRA less than 9% (DP Neutral Organics Not possible to classify No alert found Schiff base formation No alert found	Discrete chemical Neutral Organics No alert found DPRA less than 9% (DP., Not possible to classify DPRA less than 9% (DP., Neutral Organics Not possible to classify No alert found No alert found No alert found
Eye irritation/corrosion Inclusion rules by BfR in vitro mutagenicity (Ames test) alerts by ISS in vivo mutagenicity (Micronucleus) alerts by ISS Vieratinocyte gene expression Oncologic Primary Classification Protein binding alerts for rikon sensitization according Vierotein binding alerts for skin sensitization according Vierotein Binding alerts for skin sensitization by OASIS Vierotein Binding alerts for skin sensitization by Birk Skin irritation/corrosion Exclusion rules by BfR Vierotein Vierotein aleroteins Vierotein Concellements Vierotein Concellements Vierotein Concellements Vierotein Concellements Vierotein Concellements Vierotein Concellements	Substance type US-EPA New Chemical Categories Protein binding by OASIS Protein binding by OASIS Protein binding potency Cys (DPRA 13 Protein binding potency GSH Protein binding potency Lys (DPRA 13%) Endpoint Specific Aquatic toxicity classification by ECOS Keratinocyte gene expression Dratein binding alerts for skin sensitiz Protein binding alerts for skin sensitiz Protein binding alerts for skin sensitiz Protein binding Potency fr-CLAT Respiratory sensitisation	Mixture Neutral Organics Schiff base formation No alert found DPRA less than 9% (DPRA DPRA less than 9% (DPRA DPRA less than 9% (DPRA Not possible to classify acc Not possible to classify acc No alert found No alert found No alert found No alert found	Discrete chemical Neutral Organics No alert found DPRA less than 9% (D, Not possible to classif DPRA less than 9% (D, Neutral Organics Not possible to classif No alert found No alert found No alert found No alert found	Discrete chemical Neutral Organics Schiff base formation No alert found Out of mechanistic do Not possible to classify DPRA less than 9% (DP Neutral Organics Not possible to classify No alert found No alert found No alert found	Discrete chemical . Neutral Organics No alert found DPRA less than 9% (DP., Not possible to classify DPRA less than 9% (DP., Neutral Organics Not possible to classify No alert found No alert found No alert found No alert found
Eye irritation/corrosion Inclusion rules by BfR in vitro mutagenicity (Ames test) alerts by ISS in vivo mutagenicity (Micronucleus) alerts by ISS Vieratnocyte gene expression Oncologic Primary Classification Protein binding alerts for skin sensitization according Vieroten binding alerts for skin sensitization according Vieroten binding alerts for skin sensitization according Vieroten binding alerts for skin sensitization by OASIS Vieroten binding alerts for skin sensitization by OASIS Vieroten Binding Potency h-CLAT Vieroten Binding Pot	Substance type US-EPA New Chemical Categories General Mechanistic Protein binding by OASIS Protein binding by OECD Protein binding potency Cys (DPRA 13 Protein binding potency Uss (DPRA 13%) Endpoint Specific Aquatic toxicity classification by ECOS Keratinocyte gene expression Protein binding alerts for skin sensitiz Protein binding alerts for skin sensitiz Protein binding otency froctar Respiratory sensitisation Empiric	Mixture Neutral Organics Schiff base formation No alert found DPRA less than 9% (DPRA Not possible to classify acc DPRA less than 9% (DPRA Neutral Organics Not possible to classify acc No alert found Schiff base formation No alert found No alert found	Discrete chemical Neutral Organics No alert found DPRA less than 9% (D., Not possible to classif DPRA less than 9% (D., Neutral Organics Not possible to classif No alert found No alert found No alert found No alert found	Discrete chemical Neutral Organics Schiff base formation No alert found Out of mechanistic do Not possible to classify DPRA less than 9% (DP Neutral Organics Not possible to classify No alert found Schiff base formation No alert found Group 14 - Carbon C	Discrete chemical Neutral Organics No alert found No alert found DPRA less than 9% (DP.,, Not possible to classify DPRA less than 9% (DP.,, DPRA less than 9% (DP.,, Not possible to classify No alert found No alert found No alert found No alert found Screup 14 - Carbon C
Eye irritation/corrosion Inclusion rules by BfR in vitro mutagenicity (Ames test) alerts by ISS in vivo mutagenicity (Micronucleus) alerts by ISS Vivo mutagenicity (Micronucleus) alerts by ISS Vivo mutagenicity (Micronucleus) alerts by ISS Vivo mutagenicity (Micronucleus) alerts by Vivo Protein binding alerts for skin sensitization according Vivo Protein Binding Potency h-CLAT Vivo Respiratory sensitisation Retinoic Acid Receptor Binding ttER Expert System - USEPA Skin irritation/corrosion Inclusion rules by BfR Skin irritation/corrosion Inclusion rules by BfR Skin irritation/corrosion Inclusion rules by BfR Vivo Chemical elements Vivo Statistical groups Vivo Granic functional groups Vivo Granic functional groups Vivo Granic functional groups Vivo Granic functional groups (US EPA)	Substance type US-EPA New Chemical Categories General Mechanistic Protein binding by OASIS Protein binding by OECD Protein binding potency Cys (DPRA 13 Protein binding potency GSH Protein binding potency Usy (DPRA 13%) Endpoint Specific Aquatic toxicity classification by ECOS Keratinocyte gene expression Protein binding alerts for skin sensitiz Protein binding alerts for skin sensitiz Protein Binding Potency freCLAT Respiratory sensitisation Empiric Chemical elements	Mixture Neutral Organics Schiff base formation No alert found DPRA less than 9% (DPRA Not possible to classify acc DPRA less than 9% (DPRA Neutral Organics Not possible to classify acc No alert found Schiff base formation No alert found No alert found No alert found No alert found	Discrete chemical Neutral Organics No alert found DPRA less than 9% (D., Not possible to classif DPRA less than 9% (D., Neutral Organics Not possible to classif No alert found No alert found	Discrete chemical Neutral Organics Schiff base formation No alert found Out of mechanistic do Not possible to classify DPRA less than 9% (DP DPRA less than 9% (DP Neutral Organics Not possible to classify No alert found Schiff base formation No alert found No alert found Group 14 - Carbon C	Discrete chemical . Neutral Organics No alert found DPRA less than 9% (DP., Not possible to classify DPRA less than 9% (DP., DPRA less than 9% (DP., Not possible to classify No alert found No alert found No alert found No alert found No alert found No alert found No alert found
Eye irritation/corrosion Inclusion rules by BfR in vitro mutagenicity (Ames test) alerts by ISS in vitro mutagenicity (Micronucleus) alerts by ISS Vive mutagenicity (Micronucleus) alerts by ISS Viven binding alerts for chromosomal aberration by Protein binding alerts for skin sensitization according Protein Binding Potency h-CLAT Respiratory sensitisation Retinoic Acid Receptor Binding ritER Expert System - USEPA Skin irritation/corrosion Inclusion rules by BfR Vinemical elements Comprise Organic functional groups Organic functional groups (Nested) Organic functional groups, Norbert Haider (checkmol	Substance type US-EPA New Chemical Categories Protein binding by OASIS Protein binding by OASIS Protein binding potency Cys (DPRA 13 Protein binding potency GSH Protein binding potency GSH Protein binding potency Lys (DPRA 13%) Endpoint Specific Aquatic toxicity classification by ECOS Keratinocyte gene expression Protein binding alerts for skin sensitiz Protein Binding Potency In-CLAT Respiratory sensitisation Empiric Chemical elements Groups of elements	Mixture Neutral Organics Schiff base formation No alert found DPRA less than 9% (DPRA Not possible to classify acc DPRA less than 9% (DPRA Neutral Organics Not possible to classify acc No alert found Schiff base formation No alert found No alert found Schiff base formation Group 14 - Carbon C Halogens	Discrete chemical Neutral Organics No alert found DPRA less than 9% (D., Not possible to classif DPRA less than 9% (D., Not possible to classif No alert found No alert found No alert found No alert found Scoup 14 - Carbon C Non-Metals	Discrete chemical Neutral Organics Schiff base formation No alert found Out of mechanistic do Not possible to classify DPRA less than 9% (DP Neutral Organics Not possible to classify No alert found Schiff base formation No alert found Group 14 - Carbon C Halogens	Discrete chemical Neutral Organics No alert found DPRA less than 9% (DP., Not possible to classify DPRA less than 9% (DP., Neutral Organics Not possible to classify No alert found No alert found No alert found No alert found Scoup 14 - Carbon C Non-Metals
Eye irritation/corrosion Inclusion rules by BfR in vitro mutagenicity (Ames test) alerts by ISS in vivo mutagenicity (Micronucleus) alerts by ISS V Keratinocyte gene expression Oncologic Primary Classification Protein binding alerts for chromosomal aberration by Protein binding alerts for skin sensitization according Protein Binding volters for skin sensitization by OASIS Protein Binding voltency h-CLAT Respiratory sensitisation Retinoic Acid Receptor Binding rtER Expert System - USEPA Skin irritation/corrosion Inclusion rules by BfR Skin irritation/corrosion Inclusion rules by BfR V Chemical elements Groups of elements Groups of elements Groups of elements Groups (functional groups) Organic functional groups (seted) Organic functional groups, Norbert Haider (checkmol Structure similarty Tautomers unstable	Substance type US-EPA New Chemical Categories General Mechanistic Protein binding by OASIS Protein binding by OECD Protein binding potency Cys (DPRA 13 Protein binding potency GSH Protein binding potency Lys (DPRA 13%) Endpoint Specific Aquatic toxicity classification by ECOS Keratinocyte gene expression Protein binding alerts for skin sensitiz Protein binding alerts for skin sensitiz Protein binding otency fr-CLAT Respiratory sensitisation Empiric Chemical elements Groups of elements Lipinski Rule Oasis	Mixture Neutral Organics Schiff base formation No alert found DPRA less than 9% (DPRA Not possible to classify acc DPRA less than 9% (DPRA Neutral Organics Not possible to classify acc No alert found Schiff base formation No alert found No alert found No alert found Group 14 - Carbon C Halogens Bioavailable	Discrete chemical Neutral Organics No alert found DPRA less than 9% (D Not possible to classif DPRA less than 9% (D Neutral Organics Not possible to classif No alert found No alert found No alert found No alert found Group 14 - Carbon C Non-Metals Bioavailable	Discrete chemical Neutral Organics Schiff base formation No alert found Out of mechanistic do Not possible to classify DPRA less than 9% (DP., Neutral Organics Not possible to classify No alert found Schiff base formation No alert found No alert found Group 14 - Carbon C Halogens Bioavailable	Discrete chemical Neutral Organics No alert found DPRA less than 9% (DP., Not possible to classify DPRA less than 9% (DP., Neutral Organics Not possible to classify No alert found No alert found No alert found No alert found So alert found Group 14 - Carbon C Non-Metals Bioavailable
Eye initiation/corrosion Inclusion rules by BfR in vitro mutagenicity (Ames test) alerts by ISS in vitro mutagenicity (Micronucleus) alerts by ISS Vienation (Corrosion Inclusion) Orcologic Primary Classification Protein binding alerts for chromosomal aberration by Viena binding alerts for skin sensitization according Protein Binding Potency h-CLAT Viena Binding Potency h-CLAT Viena Respiratory sensitisation Retrinok Acid Receptor Binding rtER Expert System - USEPA Skin irritation/corrosion Inclusion rules by BfR Skin irritation/corrosion Inclusion Skin irritation/corrosion Inclusion Skin irritation is groups (Inclusion is groups (Inclusion) Ski	Substance type US-EPA New Chemical Categories General Machanistic Protein binding by OASIS Protein binding by OECD Protein binding potency Cys (DPRA 13 Protein binding potency Uss (DPRA 13%) Endpoint Specific Aquatic toxicity classification by ECOS Keratinocyte gene expression Protein binding alerts for skin sensitiz Protein binding alerts for skin sensitiz Protein binding otency n-CLAT Respiratory sensitisation Empiric Chemical elements Groups of elements Lipinski Rule Oasis Organic functional groups	Mixture Neutral Organics Schiff base formation No alert found DPRA less than 9% (DPRA Not possible to classify acc DPRA less than 9% (DPRA Neutral Organics Not possible to classify acc No alert found Schiff base formation No alert found No alert found No alert found Group 14 - Carbon C Halogens Bioavailable Alcohol	Discrete chemical Neutral Organics No alert found DPRA less than 9% (D., Not possible to classif DPRA less than 9% (D., Not possible to classif Not possible to classif No alert found No alert found No alert found No alert found Group 14 - Carbon C Non-Metals Bioavailable Alcohol	Discrete chemical Neutral Organics Schiff base formation No alert found Out of mechanistic do Not possible to classify DPRA less than 9% (DP., DPRA less than 9% (DP., Neutral Organics Not possible to classify No alert found Schiff base formation No alert found Group 14 - Carbon C Halogens Bioavailable Aryl	Discrete chemical Neutral Organics No alert found No alert found DPRA less than 9% (DP., Not possible to classify DPRA less than 9% (DP., Not possible to classify No alert found No alert found

The profiling results for all the constituents are consistent with one exception (Constituent #2). The constituent #2 reacts with proteins via Schiff-base formation according to general and endpoint-specific Protein binding alerts for SS profiler.

- Background
- Keywords
- Objectives
- The exercise
- Workflow
 - Input
 - Profiling
 - Data

Data

- "Data" refers to the electronic process of retrieving the environmental fate, eco-toxicity and toxicity data that are residing in the Toolbox.
- Data gathering can be executed in a global fashion (i.e. collecting all data of all endpoints) or on a more narrowly defined basis (e.g. collecting data for a single or limited number of endpoints).
- In this example, we limit our data gathering to the common Skin endpoints from databases associated with Skin Sensitization endpoint. The relevant databases are become highlighted in green based on the selected target endpoint
Data

Data Process of collecting data

QSAR TOOLBOX	Image: Description Description Description Description > Profiling > Deta > Data Gap Filling > Report	X # 5 4 8 90 90
Data Import Export Delete Import Import Import Import Import Import Gather Import IUCLID6 IUCLID6 Database Inventory		The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC, Bulgaria
Gather Import IUCLID UCLID Database Inventory	Filter endpoint trea Constituent #3 Structure 39 points added across 2 chemicals. Brancers 39 points added across 2 chemicals. Physical Chemical Toperties OK Brancers OK Human Health Istards OK Human Health Istards OK Brancers OK Human Health Istards OK Brancers OK Human Health Istards OK Human Health Is	S are found for three mixture
4	د 	× ×

Recap

- We have entered the mixture with defined components.
- The profiling results showed no protein binding alerts for two of the mixture constituents (constituents # 1 and #3). The third constituent (constituent #2) has positive protein binding alerts and could elicit skin sensitization effect.
- Negative experimental data has been found for two of the mixture constituents (constituents # 2 and #3). No experimental data has been found for the third constituent (constituent #1).
- The constituent without experimental data and positive protein binding alert (constituent #1) will be used for further read across analysis. Then, all of the available data – experimental and predicted will be used for skin sensitization prediction of the mixture.

Outlook

- Background
- Keywords
- Objectives
- The exercise
- Workflow
 - Input
 - Profiling
 - Data

• Read across prediction of constituent without data

• Focus constituent without experimental data

Read across prediction of constituent without data Focus constituent

Read across prediction of constituent without data Focus constituent

QSAR TOOLBOX	Profiling > Data > Category definition > Data Sap Filling > Report	
Data Import Export Delete		The OECD QSAR Toolbox for Grouping Chemicals into Categories
Gather import IOCLID0 Documents Occument 1 	Filer endpoint tree Structure Structure info Parameters Parameters Environmental fate and Transport Environmental fate and Transport Environmental fate and Transport Bioaccumulation Human Health Hazards Catclinogenicity Bioaccumulation Genetic Toxicity Immunotoxicity Intritation / Corosion Narotoxicity Repeated Dose Toxicity Toxickity to Reproduction Toxickity to Reproduction	Developed by LMC, Bulgaria
v shi selisuuuuu v shi selisuutoo ECETOC v Tovrseniit	This focused component appeared in separate data matrix	
		×
1. A documented tr	ee with focused constituent #1 is automatically selected. The workf ollecting analogues of the focused constituent #1.	low could

Outlook

- Background
- Keywords
- Objectives
- The exercise
- Workflow
 - Input
 - Profiling
 - Data

• Read across prediction of constituent without data

- Focus constituent without experimental data
- Define category

Category Definition Overview

- This module provides the user with several means of grouping chemicals into a toxicologically meaningful category that includes the target molecule.
- This is the critical step in the workflow.
- Several options are available in the Toolbox to assist the user in refining the category definition.
- The different grouping methods allow the user to group chemicals into chemical categories according to different measures of "similarity".

Basic guidance for category formation and assessment

Suitable categorization phases:

- 1. Structure-related profilers.
- 2. Endpoint specific profilers (for sub-cat).
- 3. Additional structure-related profilers, if needed to eliminate dissimilar chemicals (to increase the consistency of category) (e.g. chemical elements).

Performing categorization:

- 1. The categorization phases should be applied successively
- 2. The application order of the phases depend on the specificity of the data gap filling
- 3. More categories of same Phase could be used in forming categories
- 4. Some of the phases could be skipped if consistency of category members is reached

Graphical illustration of suitable categorization phases is shown on next slide

Suitable Categorization/Assessment Phases Phase I. Structure based **US EPA Categorization OECD** Categorization Organic functional group Structural similarity ECOSAR **Repeating Phase I due to Multifunctionality of chemicals** Phase II. Mechanism based DNA binding mechanism Protein binding mechanism ٠ Genotoxicity/carcinogenicity Cramer rules Verhaar rule Skin/eye irritation corrosion rules Metabolism accounted for Phase III. Eliminating dissimilar chemicals **Apply Phase I – for structural dissimilarity** Filter by test conditions – for Biological dissimilarity

Broad grouping Endpoint Non-specific

Subcategorization Endpoint Specific

Subcategorization Endpoint Specific

Read across prediction of constituent without data Forming category for studied endpoint

Phase I categorization in Toolbox

*Neutral organic category include chemicals having different functionalities as alcohols, ketones, ethers etc. In this respect the basic principle that structurally similar chemicals may elicit similar effects would not be preserved, because Neutral organic mixed many different functionalities

Read across prediction of constituent without data Forming category for studied endpoint

- Based on the above recommendations the OFG is used as initial categorization group
- Refinement of the initial group is based on endpoint-specific protein binding profiler:
 - Protein binding alerts for skin sensitization.

Category definition is a tool for grouping chemicals, which allows to group chemicals based on different measures of "similarity". For more details see tutorials posted on QSAR Toolbox website:

https://qsartoolbox.org/support/

See next slides

The OECD (Q)SAR Toolbox for Grouping Chemicals into Categories

Read across prediction of constituent without data Define category by OFG

- 1. Go to *Category definition* module;
- 2. Select "Sensitization" level of endpoint tree;
- 3. Select Organic functional groups (OFG) and click on Define;

4. Combination of three organic functional groups has been identified in the target chemical (in our case constituent #2), which will be used for searching analogues, click **OK**;

5. a list of 97 chemicals has been found having all the three categories identified in the target chemical; gather data for the analogues (see next slide)

Read across prediction of constituent without data Gather data for analogues chemicals

Outlook

- Background
- Keywords
- Objectives
- The exercise

Workflow

- Input
- Profiling
- Data

Read across prediction of constituent without data

- Focus constituent without experimental data
- Define category
- Apply read across

Read across prediction of constituent without data Apply read across

		01010		5						🗙 😫 🆘 🖉 🗊
QSAR TOOLBOX		10100								
ut	Profiling Data Category definiti	Data Gap Filli	ng	4			Possible data inconsis	stency	>	<
oap Filling 🔹 🗘 ow							Metadata			The OECD QSAR Toolbox
							▲ Assay			tor Grouping Chemicals
							Buehler Test (1	14 chemicals; 21 data)		into categories
Trend analysis Read across QSAR Standardized Automated	1						Freund's Com	plete Adjuvant Test (2 chemica	ıls; 2 data)	Developed by LMC, Bulgaria
Documents	Filter endpoint tree	1 [target]	2	3	4 5	6	GPMT (27 che	micais; oz data) s Test (1 chemicals: 1 data)		12 ^
Document 1		1					✓LLNA (45 cher	nicals; 126 data)		
③ [C: 1;Md: 0;P: 0] Substance				à.	5		✓Mouse Local L	ymph Node Assay (LLNA): Brd	U-ELISA (1 chemicals; 4 data)	1° No"
A & [C: 4;Md: 39;P: 0] Composition list	Structure		0,0	de la		"actua	✓ Endpoint			ميدو ميزه
V [C: 1;Md: 0;P: 0] Constituent #1 IC: 07:Md: 228:P: 01 Ketone < AND > And < AND >		ba b	6.1		1. A 2. C.		EC3 (28 chemi	icals; 38 data)		e des
© IC: 1:Md: 0:P: 01 Constituent #2							V Other Endpoir	nt (T chemicais; 5 data) s: 29 data)		
[C: 1;Md: 0;P: 0] Constituent #3	Structure info						Skin sensitisat	ion (56 chemicals: 144 data)		
	Parameters						▲ Native scale/unit			
	Physical Chemical Properties						 (10 chemicals) 	; 34 data)		
	Environmental Fate and Transport						✓IUCLID6 Pickli	st PG6-60218 - v1.2 (54 chemic	cals; 112 data)	
	Ecotoxicological Information						Skin sensitisat	tion II (ECETOC) (25 chemicals; tion EC3(ratio) (5 chemicals; 5 c	30 Gata)	
	📮 Human Health Hazards						Skin sensitizat	tion GHS (ordinal) (12 chemical	ls: 30 data)	
	Acute Toxicity						Organ			
	- ± ADME						Type of m			
	Bioaccumulation						- Select coale			
	Carcinogenicity							[converted]		
	— Developmental Toxicity / Teratogenicity							218 - v1.2 [112 native da	ata and 0 converted]	
	Genetic Toxicity						Skin ensitization (i	Danish EPA) [O native data ar	nd 40 converted]	
	Immunotoxicity						Skir sensitisation I	(Oasis) [0 native data and 38	converted]	
< >>	Irritation / Corrosion						 Skin sensitisation II Skin sensitization E 	(ECETOC) [35 native data and (C3(ratio) [5 native data and (d 133 converted]	
	Neurotoxicity						 Skin sensitization G 	HS (ordinal) [30 native data	and 5 converted]	
Data Gap Filling Settings	Photoinduced toxicity									
✓ Only endpoint relevant	Repeated Dose Toxicity									
	Sensitisation AW SW AOF						Converte di data			
At this position:	Respiratory Tract	1					Converted data			
Select a cell with a rigid (bold) pa	Skin						98 from scale/unit IUCL	ID6 Picklist PG6-60218 - v1.2	_	
Automated workflows	+ in Chemico 1/	3					30 from scale/unit Skin s	sensitization GHS (ordinal)	5	
Standardized workhows		°								
										×
	+ Buehler Test 14/2	1					Chemicals 55/64: Data 16	8/216	OK Cancel	M: GHS criteria r
	11 reund's Complete Adjuvant Tast 2									
		2								M: Negative
	tt Intracutaneous Test 1,	1			M GUG IN I III		14 20 5 5		0 N N N N N	
	-tt LLNA 45/12	6		M: not sensitising	M: GHS criteria n., M: n	not sensitising	M: 20.5 %	M: GH	5 criteria n M: Negative	M: Negative
	└──! Mouse Local Lymph Node Assay (LLNA) 1,	4								

1. Go to *Data Gap filling* module;

2. Click on the cell corresponding to Skin Sensitization in Vivo (i.e. in this case we will combine all the data stored under "In vivo" level);

- 3. Click on Read-across button;
- 4. Select scale/unite Skin sensitization II(ECETOC);
- 5. Click **OK** (in this case we mix all endpoints and assays).

Read across prediction of constituent without data Apply read across

Read across prediction of constituent without data Subcategorization

- The initial category could be refined by subcategorizing the analogues according to the "Protein binding alerts for skin sensitization by OASIS" and Structural similarity profilers.
- These steps are summarized in the next screen shots.

Read across prediction of constituent without data Subcategorization by Protein binding alert for SS

3. Remove selected to eliminate dissimilar chemicals, reacting by different protein binding mechanisms;

Read across prediction of constituent without data Subcategorization by Structural similarity

Read across prediction of constituent without data

	vt ► Profiling ► Data ► Co	efinition > Data Gap Filling > Report		X O S C C C C C C C C C C C C C C C C C C
Tandankai Dadaana (NKAD Shadadiad				into Categories
irend analysis read across (Q)SAR Standardized	Filter endpoint tree	[target] 2 3 4 5 6	7 8 9 10 11	Developed by LMC, Bulgaria
Document Document Document Document C 1Mdd 0P:0 0 Jubiance	Structure Structure info arameters Structure info arameters Structure info arameters Environmental Fate and Transport Cotoxicological Information Human Health Hazards Acute Toxicity ADME Bioaccumulation Carcinogenicity Developmental Toxicity / Teratogenicity Genetic Toxicity			**************************************
<	Irritation / Corrosion			
	Neurotoxicity			
Only endpoint relevant At this position: Select a cell with a rigid (bold) path Automated workflows 0 Standardized workflows 0	Photoinduced toxidity Repeated Dose Toxicity Sensitisation AW SW/ Bespiratory Tract Skin fm (n Chemico in Vitro in Vitro in Vitro			M GUS schedu
	Freund's Complete Adjuvant Test			M: Ons chiena h
	GANT 	Positive		M: Negative
4	ToxCast Toxicity to Reproduction Toxicokinetics, Metabolism and Distribut	e read-across prediction for the a new level of the er	e constituent #1 generates ndpoint tree.	M: Negative

Outlook

- Background
- Keywords
- Objectives
- The exercise
- Workflow
 - Input
 - Profiling
 - Endpoint
 - Read across prediction of constituent without data
 - Filling data gap for skin sensitization of mixture

Data Gap Filling Overview

- "Data Gap Filling" module gives access to two different data gap filling tools:
 - Independent MOA- all components are with different mode of action
 - Similar MOA- all components are with similar mode of action
- More details about different MOA could be found in F1 help
- In this particular case all components of the current mixture are with dissimilar mode of action. In this respect Independent MOA is applied

Data Gap Filling Independent MOA

Assumption – combined effect can be calculated from the effects caused by the individual mixture components by following the statistical concept of independent random events

Mixture response: $E(\mathbf{e})$

$$C_{Mix}$$
) = 1 - $\prod_{i=1}^{N} [1 - E(C_i)]$

 $E(C_{Mix})$ - the effect provoked by the total mixture

 $E(C_i)$ - the effects that the individual components would cause if applied singly at that concentration at which they are present in the mixture

Problem - dose-response relationships are practically unknown

Data Gap Filling Case study

- In this particular case components of the current mixture have different modes of action (constituent #1 and #3 have same mode, they do not interact with proteins (see slide 32), however constituent #2 interacts with proteins via Schiff-base mechanism). In this respect Independent MOA is applied;
- Application of Independent MOA for this case study is illustrated on the next slides

Filling data gap for skin sensitization of mixture Applying Independent Mode of Action

snapshot above;

- 2. Click on the cell corresponding to this mixture;
- 3. Click on **Composition list** (highlighted) from documented three;
- 4. The latter action automatically activate two mode of actions: Independent MOA and Similar MOA.

Filling data gap for skin sensitization of mixture Applying Independent Mode of Action

Q5RR 2 80×		► Renat	Possible data inconsistency	X 0 5 6 0
Independent MO/ Similar MOA			Metadata Metadata Assay	The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC, Bulgaria
Document 1 Image: Cit 1 Mdc 0P: 0] Substance Image: Cit 1 Mdc 0P: 0] Substance Image: Cit 1 Mdc 0P: 10 Constituent #1 Image: Cit 1 Mdc 0P: 10 Constituent #2 Image: Cit 1 Mdc 0P: 0] Constituent #2 Image: Cit 1 Mdc 0P: 0] Constituent #2 Image: Cit 1 Mdc 0P: 0] Constituent #3	Filter endpoint tree Parent chemical [target] Structure Structure info Parameters Physical Chemical Properties Forwironmental Fate and Transport Ecotoxicological Information Human Health Hazards Acute Toxicity Human Health Hazards Acute Toxicity Developmental Toxicity / Teratogenicity Developmental Toxicity / Teratogenicity Genetic Toxicity Inmunotoxicity Inter Info (Canadian Information Inter	Constituent #1 Cons	 MA B C (1 CREMICAIS: 1 Data) CEC3 (1 chemicals: 2 data) EC3 (20R> Skin sensitisation (1 chemicals; 1 data) Skin sensitisation (2 chemicals; 6 data) Native scale/unit (1 chemicals; 4 data) (2)UCLID6 Picklist PG6-60218 - v1.2 (2 chemicals; 4 data) Skin sensitisation I (Oasis) (1 chemicals; 1 data) Skin sensitisation I (I chemicals; 1 data) Skin sensitisation I (CeETOC) (1 chemicals; 1 data) Skin sensitization EC3(ratio) (1 chemicals; 1 data) Skin sensitization CE3(ratio) (1 chemicals; 1 data) Skin sensitization GHS (ordinal) (1 chemicals; 2 data) Organ Select scale/unit to use [4 native data and 0 converted] UUCLID6 Picklist PG6-60218 - Units that and 0 converted] Skin sensitication Converted [4 native data and 0 converted] 	~
Data Gap Filling Settings Only endpoint relevant At this position: Select a cell with a rigid (bold) path Automated workflows 0 Standardized workflows 0	Neurotoxicity Photoinduced toxicity Repeated Dose Toxicity Sensitisation Skin	R: Positive MS:	Skin sensitisation I (Dasis) [10 native data and 4 converted] Skin sensitisation II (ECETOC) [1 native data and 2 converted] Skin sensitisation II (ECETOC) [1 native data and 0 converted] Skin sensitization CES(ratio) [1 native data and 0 converted] Skin sensitization CES(ratio) [1 native data and 0 converted] Skin sensitization GHS (ordinal) [2 native data and 2 converted] Converted data Converted data Converted data Converted data Converted data Converted data Converted Skin sensitisation I (Dasis) from scale/unit Skin sensitisation I (Dasis) from scale/unit Skin sensitization CES(ratio) Converted Skin sensitization GHS (ordinal) Chemicals 3/3; Data 8/14 Ok Cancel	
1. Click on the 2. Select Inde 3. Select Skin 4. Click OK .	e cell corresponding to the Sk ependent MOA; sensitization II(ECETOC);	in Sensitization;		×

Filling data gap for skin sensitization of mixture Applying Independent Mode of Action

QSAR TOOLBOX	► Input	► Profiling	Data Category def	01010 01 0 10100 inition Data Gap Fillin	g F Rep	ort			
Gap Filling	Workflow								The OECD QSAR Toolbox for Grouping Chemicals into Categories
 ➢ Documents ※ ➢ Document 1 ※ Substance △ ※ Composition list ※ Constituent #1 △ ※ Constituent #2 ▲ ☆ Ketone<and>Aryl<ai< li=""> ▲ ⊞ Enter GF(RA) with 3: △ ⊞ Data usage opt ③ Ch: 3] Data: ③ Constituent #3 ⊞ Enter GF(IndependentMinistry) </ai<></and>	ND>Aryl halide (Organic 30 chemicals, 66 data poi iions are changed to: May 2 Subcategorized: Protei OA) with 4 chemicals, 6	Filter endpoint tree	oxicity Toxicity AW SW AOP 1/12 3/6 oduction Metabolism and Distributi	Parent chemical [target]	Constituent #1 HycOH MS: >2E+03 µM MS: Negative	Constituent #2	Constituent #3		Vereloped by LMc, Bulgana
 Data Gap Filling Set Only endpoint relevant At this position: QSARs Automated workflows Standardized workflows In nodes below: QSARs Automated workflows Standardized workflows 	ting: 0 0 0 0 0 0	Descriptors Prediction	Signative Signat	Empirical calcu Predicted: Neg	ation of A B C, Ed ative	2.5	on, based on 6 values	3.5	Select / filter data Descriptors / data Calculation options Visual options Information Miscellaneous Accept prediction
Read across is applied for the mixture (assuming Independent Mode of Action)									

Filling data gap for skin sensitization of mixture Applying Independent Mode of Action

The OECD (Q)SAR Toolbox for Grouping Chemicals into Categories

Filling data gap for skin sensitization of mixture Applying Independent Mode of Action

Outlook

- Background
- Keywords
- Objectives
- The exercise

Workflow

- Input
- Profiling
- Endpoint
- Read across prediction of constituent without data
- Filling data gap for skin sensitization of mixture

• Generating report for mixture The OECD (Q)SAR Toolbox for Grouping Chemical's into Categories

Report

- Remember the report module allows the user to generate a report on the predictions performed with the Toolbox.
- The report can be printed or saved in different formats.
- Generating the report is shown on next screenshots.

Report

- 1. Go to **<u>Report</u>** section;
- 2. Click on the cell corresponding to IMOA prediction;
- 3. Click **Prediction** button. A wizard appears where the user could customize the sections;
- 4. Click Create report.
- 5. Click **OK** on the appeared message; Two reports are generated: one summary report for the mixture and one for the read-across prediction for the constituent #1.
- 6. Select prediction of mixture and click Open button.

Report

Outlook

- Background
- Keywords
- Objectives
- The exercise
- Workflow
- Save the prediction result

Saving the prediction result

- Saving functionality allows storing/restoring the current state of Toolbox documents including loaded chemicals, experimental data, profiles, predictions, etc.
- This functionality is implemented based on saving the sequence of actions that led to the current state of the Toolbox document and later executing these actions in the same sequence in order to get the same result(s).
- Saving the file with TB prediction is illustrated on next screenshot.
QSAR TOOLEOX

Saving the prediction result

