OECD (Q)SAR Toolbox v.4.4

Example illustrating endpoint vs. endpoint correlation using ToxCast data
Outlook

• Background
• Objectives
• The exercise
• Workflow
This presentation is designed to introduce the user to:

- ToxCast database as part of the Toolbox database
- Illustration of endpoint vs. endpoint correlations using:
 - ToxCast data
 - ToxCast and Estrogen receptor data
Outlook

- Background
- **Objectives**
- The exercise
- Workflow
Objectives

• This presentation demonstrates endpoint vs. endpoint correlations using ToxCast and Estrogen receptor data
Outlook

• Background
• Objectives
• The exercise
• Workflow
The exercise

• Illustration of endpoint data correlations using the ToxCast and estrogen binding data between the two types of data:

 ➢ AC50 vs. AC50 endpoints associated with different test type
 ➢ AC50 vs. Estrogen receptor binding data
Outlook

- Background
- Objectives
- The exercise
- Workflow
Workflow

• The Toolbox has six modules which are typically used in a workflow:
 • Chemical Input
 • Profiling
 • Endpoints
 • Category Definition
 • Filling Data Gaps
 • Report

• In this example we will use the modules in a different order, tailored to the aims of the example.
Outlook

• Background
• Objectives
• The exercise
• Workflow
 • Load ToxCast database
ToxCast database
Loading database

1. Click on “Database” button;
2. Type in the filter “Tox” and select “ToxCast DB”;
3. Click “OK”;
4. Chemicals are loaded on data matrix.
ToxCast database
Sidebar of database relevancy

Once the endpoint is selected, the relevant databases become highlighted in green.

1. Expand Human health hazard and click on the level ToxCast;
2. The database is getting green highlighted; select it and click Gather (3);
3. Click OK to extract data from selected database.

For the purpose of forthcoming example we need to collect data for chemicals.
1. The data appears in the datamatrix under level “ToxCast”
Outlook

• Background
• Objectives
• The exercise
• **Workflow**
 • Load ToxCast database
 • *ToxCast database - overview*
ToxCast database
Background

• A major part of EPA’s CompTox research is the ToxCast™ project. ToxCast is a multi-year project launched in 2007 that uses automated chemical screening technologies (called “high-throughput screening assays”) to expose living cells or isolated proteins to chemicals. The cells or proteins are then screened for changes in biological activity that may suggest potential toxic effects. These innovative methods have the potential to limit the number of required laboratory animal-based toxicity tests while quickly and efficiently screening large numbers of chemicals.

• ToxCast has evaluated over 2,000 chemicals from a broad range of sources including: industrial and consumer products, food additives, and potentially "green" chemicals that could be safer alternatives to existing chemicals. Chemicals were evaluated in over 700 high-throughput assays that cover a range of high-level cell responses and approximately 300 signaling pathways.

• ToxCast results are contributed to the federal agency collaboration called Toxicity Testing in the 21st Century (Tox21). Tox21 pools chemical research, data and screening tools from multiple federal agencies including the National Toxicology Program. So far, Tox21 has compiled high-throughput screening data on nearly ten thousand chemicals.
Outlook

- Background
- Objectives
- The exercise
- **Workflow**
 - Load ToxCast database
 - ToxCast database – overview
 - Correlation of data - background
Correlation of endpoint data
Background

• This functionality introduces the user to the opportunity to analyze correlations between selected gap filling endpoints (endpoints used for prediction) and other endpoint data.

• It is applicable for correlation analysis of data presented in ordinary, interval or ratio scale.

• If correlated data are measured in interval or ratio scale they are transformed in ordinary scale and the strength of the correlation is estimated by Spearman correlation coefficient.

• Basically, this functionality provides a correlation between a target endpoint (this is the initial endpoint selected by the user) displayed on ordinate axis (Y-axis) and other endpoint data displayed on the abscissa (X-axis).
Correlation of endpoint data
Spearman coefficient factor

• Spearman’s rank correlation coefficient is a nonparametric rank statistic proposed by Charles Spearman as a measure of the strength of an association between two variables. It assesses how well the relationship between two variables can be described using a monotonic function.

• Spearman correlation coefficient could be used for exploring the covary between:
 • two ranked variables
 • one measurement variable and one ranked variable (in this case, the measurement variable need to be converted to ranks)

• Spearman correlation varies from -1 to +1 and the interpretation of the coefficient factor is provided below:
 • 0.00 – 0.19 – very weak correlation
 • 0.20 – 0.39 – weak correlation
 • 0.40 – 0.59 – moderate correlation
 • 0.60 – 0.79 – strong correlation
 • 0.80 – 1.0 – very strong
Outlook

• Background
• Objectives
• The exercise

• **Workflow**
 • Load ToxCast database
 • ToxCast database – overview
 • Correlation of data – background
 • **Types endpoint correlations**
Types endpoint correlations are as follows:

- Continuous vs. continuous
- Categorical vs. categorical*:
 ✓ Categorical vs. categorical
 ✓ Categorized continuous vs. categorical
 ✓ Categorized continuous vs. categorized continuous

*All type categorical vs. categorical correlations are not illustrated in this presentation. These type correlations are shown in presentation “Tutorial 13 TB4.4. Example illustrating endpoint vs. endpoint correlation for apical endpoints”
Outlook

• Background
• Objectives
• The exercise

• **Workflow**
 • Load ToxCast database
 • ToxCast database – overview
 • Correlation of data – background

• **Types endpoint correlations**
 • Continuous vs. continuous
Types endpoint correlations
Continuous vs. continuous

• The aim of this type correlation is to illustrate how continues type endpoint data or so called ratio data correlate with each other (e.g. LC50 vs. EC50 data).

• In this example we will illustrated how AC50 data associated with two different test assays extracted from ToxCast DB correlate with each other:
 • NCGC Reporter Gene Assay ERa Agonist, Estrogen receptor 1 (assay 1)
 • Tox21_Era_BLA_Agonist_ch2 (assay 2)

• Step by step workflow is presented on the next few slides. Summary of the workflow steps are provided below:
 • Gather experimental data (step 1)
 • Selection of target endpoint (step 2)
 • Enter Gap filling (step 3)
 • Change default X-descriptor (logKow) with AC50 data (step 4)
Types endpoint correlations
Continuous vs. continuous
Gather experimental data – step 1

Follow the steps if you do not already load Toxcast data on data matrix.
1. Go to “Data”
2. Select “ToxCast” DB
3. Click “Gather”
In this step we need to select the first endpoint, which will be used in the correlation. This will be the endpoint displayed on the Y-axis. The second endpoint will be selected latter on.

1. Go to **Data Gap Filling** module;
2. Highlight the empty cell next to the AC50 endpoint associated with assay: “NCGC Reporter Gene Assay ERa Agonist”
3. Click “**Trend analysis**”;
4. A window alerting you for data inconsistencies appears. Keep it as it is. Click “**OK**”.
The message appears informing the user how many chemicals with experimental data are excluded from gap filling due to missing X descriptor values.

1. Click "OK";}
In this step one of the endpoint used in the correlation analysis is plotted on Y-axis.

Enter Gap filling applying trend analysis. Trend analysis is applied because the target endpoint is in continues range of data and there is enough data to build a linear regression.

1. Data Gap filling stage
2. Trend analysis approach is applied
3. AC50 endpoint related to ER enzyme assay is plotted on Y-axis
4. Pay attention that default descriptor displayed on X-axis is log Kow.
Types endpoint correlations
Continuous vs. continuous
Replacement of default X-descriptor (logKow) with AC50 data – step 4

1. Click on “Descriptors/data”;
2. Click “Select endpoint tree descriptor”; A window with arranged “Endpoint data tree” appears.
3. Expand Toxcast level to the level NCGC (352/2542).

In this step we need to select the second endpoint used for the correlation analysis. This endpoint will replace the default X-parameter (usually logKow).
Types endpoint correlations
Continuous vs. continuous
Replacement of default X-descriptor (logKow) with AC50 data – step 4

1. Click on “NCGC” node to open the sub-nodes;
2. Select endpoint, which will be placed on X-axis circled in red box; point the mouse on the level of AC50 (211/211);
3. Click “OK” button.
Types endpoint correlations
Continuous vs. continuous
Replacement of default X-descriptor (logKow) with AC50 data – step 4

1. Click “OK” on the message alerting you for data inconsistency; The aim of this example is to see how the data correlates.
1. Click “OK” on the message informing you for the number of excluded chemicals due to missing X-descriptor data. They are analogues which do not have AC50 data for the assay “Tox21…”, plotted on X-axis. This will not affect the value of correlation coefficient;
Types endpoint correlations
Continuous vs. continuous
Replacement of default X-descriptor (logKow) with other AC50 data – step 4

1. The graph obtained after replacing of log Kow with Toxcast endpoint is visualized;
2. The equation including endpoint data is rebuild;
Types endpoint correlations
Continuous vs. continuous
Interpretation of correlation results

• In this example, we have correlated two AC50 endpoints associated with different type assay

• As seen from the graph, a linear relationship between two endpoints has been observed

• In order to assess only the chemicals having positive estrogen binding activity we remove the “Non-binders” chemicals based on subcategorization by “Estrogen receptor binding by OASIS” profiler (illustrated on next slide)
Types endpoint correlations
Continuous vs. continuous
Subcategorization by Estrogen receptor binding profiler

In this stage chemicals which do not show estrogen binding activity will be eliminated.

1. Open “Select/filter data” menu item, then click “Subcategorize”;
2. Select “Estrogen receptor binding” profiler;
3. Select only “Non binder” categories by left mouse click and hold “Ctrl” button;
4. Click “Remove” button.
Types endpoint correlations
Continuous vs. continuous
Interpretation of correlation results

In the forthcoming slides are illustrated three endpoint vs. endpoint correlations:

- Correlation of “Moderate ER binders” vs. AC50 data;
- Correlation of “Weak ER binders” vs. AC50 data;
- Correlation of “Strong ER binders” vs. AC50 data.

The aim of the slides is to illustrate how the chemicals possessing ER binding potency correlate with AC50 data.
Types endpoint correlations
Continuous vs. continuous
Subcategorization by Estrogen receptor binding profiler

1. Click again on **Estrogen receptor binding** profiler
2. Select “**Moderate binder**” categories
3. The chemicals corresponding to the selected categories are highlighted in green on data matrix and in light blue on the graph (4)

Correlation of “**Moderate binders**” vs. AC50 data.
Types endpoint correlations
Continuous vs. continuous
Subcategorization by Estrogen receptor binding profiler

1. Click again on **Estrogen receptor binding** profiler
2. Select **“Weak binder”** categories (left mouse click and hold “Ctrl” button);
3. The chemicals corresponding to the selected categories are highlighted in green;

Correlation of “Weak binders” vs. AC50 data.
Types endpoint correlations
Continuous vs. continuous
Subcategorization by Estrogen receptor binding profiler

1. Keep the **Estrogen receptor binding** profiler selected
2. Select **“Strong and very strong binder”** categories (left mouse click and hold “Ctrl” button)
3. The chemicals corresponding to the selected categories are highlighted in green.

Correlation of “Strong binders” vs. AC50 data.
Types endpoint correlations
Continuous vs. continuous

Correlation results

• The two AC50 endpoints associated with different types of assays have been correlated each other

• Non binders according to the Estrogen receptor binding profiler have been eliminated from the correlation

• User can analyse the distribution of remaining ER binders (Very strong, Strong, Moderate and Weak) across selected AC50 endpoint